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Abstract

The concept of an effective nuclear charge (Zeff ) is one of the foundations of inorganic chem-

istry, yet at the same time a source of great confusion. A case in point is the 4s/3d orbital

ordering in the first transition series: the bare facts are not in dispute - K has a 4s1 ground-

state configuration while isoelectronic Ti3+ is 3d1 - but the precise reasons why this change

in ground state configuration occurs have been hotly debated. The Schrödinger equation

tells us that the atomic or ionic ground state is, ultimately, governed by a balance between

kinetic energy, Coulomb attractions between electrons and the nucleus and Coulomb repul-

sions between the electrons. In defining an effective nuclear charge, however, we conceal the

mathematically challenging electron-electron repulsions by offsetting them against some of

the attractive electron-nucleus interaction. This ansatz then promotes the erroneous view

that fluctuations in Zeff are really due to differences in the electron-nucleus interaction,

simply because this is the only term that survives in the model Hamiltonian. It is then a

short leap to conclude that the way to maximise Zeff , and hence the stability of the electron,

is for it to approach the nucleus as closely as possible to maximise the Coulomb attraction.

However, this ignores the fact that the core electrons are also close to the nucleus, and so
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the electron-electron repulsions will be minimised when the electron in question is furthest

from the nucleus, not when it is closest! The charge on the nucleus is a constant, so vari-

ations in Zeff are simply proxies for variations in electron-electron repulsions: higher Zeff

really means less electron-electron repulsion. It is, therefore, variations in electron-electron

repulsion, and not variations in the electron-nucleus attraction, that we must consider when

we seek physical meaning in the effective nuclear charge. In teaching this central topic, we

should place a greater emphasis on what is real (electron-electron repulsion) and not what

is mathematical convenience (an artificially reduced nuclear charge). Only in this way can

the real physical origins of trends in orbital stability be exposed.

Introduction

The idea that an electron experiences an “effective nuclear charge”, somewhat reduced from

the true nuclear charge as a result of shielding by the other electrons, can be traced back over

a century to Moseley’s work on the X-ray spectra of atoms. These spectra typically feature

2 series of lines, the K and L series, which are now understood to correspond to transitions

from outer electron shells to vacancies in core states with principal quantum numbers n = 1

and n = 2. Moseley established that the frequencies, ν, of both series could be expressed as:

ν = Cn (Z − σ)2 (1)

where Z is the atomic number and σ = 1.0 and 7.4 for the K and L lines, respectively.

Moseley used this relationship to establish that it is the atomic number, rather than the

atomic weight, which determines the position of a given element in the periodic system.

Whilst the values of σ emerged, in the first instance, simply as empirical fitting parameters,

it is now clear that the higher value of 7.4 for the L series reflected the shielding of the

coulomb potential by the inner 1s2(2s, 2p)6 core electrons. Soon after the development of

Schrödinger’s wave theory a decade later, Zener optimised the energies of the first row atoms
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Li-Ne by treating the exponent ζ in radial wavefunctions of the form rn−1e−ζr as a variational

parameter. The average orbital energy for the atoms of the first period is given (in units of

eV) by:

E = −13.6

(
Zeff

n

)2

where Zeff , the ‘mean effective charge’, varies from 1.26 for Li to 5.88 for Ne. Slater took a

rather simpler approach to the same problem, adjusting the values of the shielding constants,

σ, in radial wavefunctions of the form:

R(r) = r(n−1)e−(Z−σ)/nr (2)

to match observed spectroscopic parameters. Slater’s study encompassed the majority of

the periodic table and, critically, allowed him to develop a set of global empirical rules

for computing the shielding constants for a given electron, i, in any atom. The effective

nuclear charge for the ith electron in an atom is then calculated using Equation 3, where

the summation runs over the j other electrons. The structure of the equation therefore

reflects the important physical point that an electron does not shield itself. The subscript i

in Equation 3 is an important reminder that the effective nuclear charge is a property of an

individual electron in an atom, not a property of the atom or ion as a whole.

Zeff
i = Z − σ = Z −

∑
j 6=i

σij (3)

Slater then stated a series of empirical rules that determine the exact values of the shield-

ing constants. The algorithm goes as follows:

Divide the electrons up into sub-shells:

1s {2s,2p} {3s,3p} {3d} {4s,4p} {4d} {4f} {5s,5p}
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1. If the reference electron is in an s or p orbital, the shielding constants are calculated

as follows:

(a) For an electron in the same sub-shell, σij=0.35, except for the 1s sub-shell where

it is 0.30

(b) For an electron in a sub-shell with principal quantum number one less than the

reference electron, σij=0.85.

(c) For an electron in a sub-shell with principal quantum number two or more less

than the reference electron, σij=1.0.

2. If the reference electron is in a d or f orbital, the shielding constants are calculated as

follows:

(a) For an electron in the same sub-shell, σij=0.35.

(b) For electrons in all sub-shells (either with lower values of n or of l), σij=1.0.

I will comment later on the motivation for the numbers Slater used, but for now let us accept

them as empirical parameters and see how they are used. As an example, let us calculate

Zeff for one of the 2p electrons of Ne (it does not matter which one!). Slater’s rules assign

shielding constants, σij, of 0.35 for each electron in the same 2s,2p shell (7 in total, 2 in 2s

and 5 in 2p) and 0.85 for the two 1s electrons, giving:

Zeff (2p) = 10− 7× 0.35− 2× 0.85 = 5.85

compared to Zener’s value of 5.88. According to Slater’s protocol, the inner 1s electrons, in

contrast, are not shielded by the outer 2s,2p shell at all, leading to a much larger Zeff :

Zeff (1s) = 10− 8× 0.0− 1× 0.30 = 9.70
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Slater’s rules are necessarily a broad-brush approximation – they do not differentiate 2s

from 2p, for example, nor do they account for shielding by outer electrons. More complex

rules for computing shielding constants that can capture these more subtle effects have sub-

sequently been published by Clementi and others, but the greater accuracy comes at the cost

of greater complexity. The power of Slater’s rules lie in their simplicity – they rely on only

a very few parameters that can be remembered easily, so they provide the basis for many

of the ‘rules of thumb’ that guide inorganic chemists. As a result, Slater’s name remains

synonymous with the concepts of shielding, penetration and effective nuclear charge almost

a century after his original work. It is useful at this juncture to pause and consider why it is

that, even in the modern era where ab initio and density functional calculations are readily

accessible and, in many cases, routine for even quite large systems, simple concepts like effec-

tive nuclear charge remain indispensable in inorganic chemistry. Despite all the advances in

electronic structure theory, the exact ground-state wavefunction for a poly-electronic atom

remains an inaccessible entity. The Hamiltonian operator can certainly be formulated exactly

in terms of its fundamental components, kinetic energy (T̂ ), nucleus-electron attraction (V̂ne)

and electron-electron repulsion (V̂ee), Equation 3, but analytical solutions are unavailable. In

purely mathematical terms, the electron-electron repulsion component of the Hamiltonian is

a 2-electron operator, and this prevents the separation of variables into a sum of 1-electron

components. If this component is absent, as it is in 1-electron atoms/ions such as hydrogen,

the equation is separable and then exact analytical solutions are accessible.

Ĥ = −1
2

∑
i ∇2

i −
∑

i
Z
ri
+
∑

i

∑
j 6=i

1
rij

= T̂ + V̂ne + V̂ee

(4)

The recognition that it is the electron-electron repulsion component of the Hamiltonian that

causes all the problems immediately suggests a work-around: we can simplify the Hamilto-

nian dramatically by removing the mathematically difficult electron-electron repulsion term

and offsetting its effects against a portion of the attractive electron-nucleus interaction. The
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phrase “offsetting” is used quite deliberately rather than the more common term “shield-

ing” to highlight the critical point that the effective nuclear charge, whilst mathematically

convenient, is nothing more than a proxy for the physically real phenomenon, which is the

electron-electron repulsion. The resultant hydrogen-like Hamiltonian:

Ĥ = −1

2

∑
i

∇2
i +

∑
i

Zeff
i

ri
= T̂ + V̂ (5)

is then separable, and leads trivially to hydrogenic solutions for each electron with eigen-

values Ei = −13.6(Zeff
i /ni)

2. The two Hamiltonians shown in Equations 3 and 4 represent

opposite ends of the quantum mechanical spectrum: the first is exact but intractable while

the second is highly simplified but trivially soluble. In moving to the simplified version,

it is important to appreciate that we pay a heavy price: we completely lose sight of the

electron-electron repulsions. In the following paragraphs, I address two specific questions

that exemplify the use (and indeed misuse) of the effective nuclear charge concept in inor-

ganic chemistry. The first of these is the textbook question of the relative stabilities of the

2s and 2p orbitals: why is the 2s orbital is more stable than 2p in all poly-electronic atoms?

The question of why the ground-state configuration of Li is 2s12p0 rather than 2p12s0 will

be familiar to every student of undergraduate-level chemistry. The second question, also

much beloved of examiners, is why the ground state configuration of K is 4s13d0 but for

isoelectronic Ti3+ it is 3d14s0. This observation lies behind the inorganic chemist’s rule of

thumb that the 4s electrons are “lost first” when a transition metal is ionised, but textbook

explanations are (in the authors opinion!) confusing. I approach these problems first using

Zeff as an empirical parameter, and then use Hartree-Fock theory to explore the physics

that actually causes the differences. What really lies behind the relative stability of the 2s

and 2p orbitals in the first row? Let us consider first the question of why the 2s orbital is

more stable than 2p in the first row (and indeed any atom with more than one electron). The

textbook answer will typically refer to the expression for the energy: E = −13.6(Zeff/n)2
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and argue that Zeff is greater for 2s than for 2p, and so the electron is more stable in a

2s orbital. The more interesting question is to ask why Zeff is greater for 2s than for 2p.

The radial distribution functions shown in Figure 1 appears to offer a facile explanation: the

inner radial node of the 2s orbital lies very close to the nucleus – the radial maximum is in

fact slightly closer than the radial maximum in the core 1s orbital. The argument then goes

that the 2s orbital ‘penetrates’ inside the 1s2 core and therefore experiences a greater net

attraction to nucleus than a 2p electron, which is largely outside the core. To quote from

some popular textbooks: Purcell and Kotz “the 2s electron experiences a nuclear charge

that is greater than Z-2” Shriver and Atkins (5th) “The closer to the nucleus an electron can

approach, the closer is the value of Zeff to Z because the electron is repelled less by other

electrons present in the atom” … ”There is a non-zero probability that a 2s electron can be

found inside the 1s shell and experience the full nuclear charge” Housecroft and Constable

“There are two types of electrostatic interaction at work”.. (attraction and repulsion). “And

electron in the 2s orbital will spend more time nearer the nucleus than an electron in the

2p orbital”. Burrows, Holman et al “…there is an area of electron density relatively close to

the nucleus for the 2s electron. The 2s electron is said to penetrate the 1s electrons and

thus a 2s electron feels a higher effective nuclear charge than a 2p electron”. Note how the

emphasis is all on the very small amount of electron density that lies inside the radial node

of the 2s orbital (the small blue peak in Figure 1). What is the justification for focussing

on this rather than the very much large peak, which contains most of the electron density?

An obvious objection to this argument is that the coulomb repulsion between two particles

is not directional – it depends only on the distance between two particles, so just because

the 2s electron spends time closer to the nucleus than the ‘core’ 1s electrons, does not mean

that it is not repelled by them! Indeed, we could make the counter argument that the inner

radial maximum of the 2s orbital is a very bad place for an electron to be, because it is very

close to the core 1s electrons.

A review of some basic electrostatics highlights many of the important points in the
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Figure 1: Radial distribution functions in a generic first-row atom.)

following discussion. Coulomb’s law states that the electrostatic potential at a point is the

sum of the potentials due to all the charged species:

V̂i = −
∑
j

qiqj
rij

(6)

Figure 2: Electrostatic potentials of a 3-particle system and a model 2-particle system.)

An obvious corollary of this is that the introduction of a second electron does not change

the interaction between a proton and electron (as long as the two original particles do not

move). The total electrostatic energy certainly changes, but that is a different thing. So in

the 3-particle system shown on the left in Figure 2 (2 electrons, one nucleus with a 2+ charge),

the total potential energy of the reference electron is V = −2
1
+ 1√

2
= −1.29. Certainly, the
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net potential (–1.29) is less than it would be in the absence of the second electron (-2), but the

interaction between the nucleus and the first electron is unchanged (at –2). In the spirit of the

effective nuclear charge argument, we could create a fictitious one-electron model system with

the same net potential (–1.29) by reducing the nuclear charge to +1.29. This seems, at first

glance, to be a very promising strategy because we reproduce the observable property of the

real system (the electrostatic potential) using a much simpler model. However, the pitfalls

emerges as soon as we ask the simple question: where could we move the reference electron

in order to make it more stable? If this question seems a little abstract, bear in mind that it

is effectively the question we ask when we try to decide on the relative stability of 2s1 vs 2p1

in Li, or 4s1 vs 3d1 in K. In the model 1-electron system with Z = +1.29, there is only one

solution – we have to move the electron closer to the nucleus. In the real system, in contrast,

there are two solutions: we could move the electron closer to the nucleus, but we could also

move it further away from the other electron. By concentrating our attention on the simpler

model system (or, equivalently, on Zeff in an atom), we lose sight of this second possibility,

and it encourages us to imagine that close approach to the nucleus is the only way to increase

stability. To bring the conversation back to atoms (and specifically poly-electronic atoms),

we need to remember that stability is fundamentally a compromise between electrostatic

attraction (to the nucleus) and electrostatic repulsion (with other electrons), as embodied in

Equation 3. So whilst closer approach of an electron to the nucleus will certainly enhance

the attraction, it does so only at the cost of greater repulsion with the core electrons. In

fact, Slater’s equation (Equation 2) captures this point beautifully – if we want to compare

Zeff for 2 electrons in the same atom, it is that varies, not Z!. It is reasonable to ask why

the balance between attraction and repulsion is not usually emphasised in undergraduate

textbook treatments of the subject (with the exception of Housecroft and Constable). The

answer lies in the all-pervading influence of the concept of effective nuclear charge, which

has dominated the thinking of inorganic chemists for generations. It has become so natural

to explain periodic trends using Zeff as the fundamental variable that the community has
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stopped thinking about what Zeffactually is. If we look at the question of 2s1 vs 2p1 in

Li, and we limit ourselves to thinking only in terms of maximising attraction, it is a very

short leap to conclude that the inner radial maximum of 2s (Figure 1) must be the cause

of its relative stability (as all of the major textbooks seem to do), simply because it affords

the closest approach to the nucleus (the 2s electron ‘penetrates’ through the 1s2 shell more

effectively than 2p). If we instead consider the reality that higher Zeff really means less

electron-electron repulsion (Equation 2), and not more electron-nucleus attraction, we see

that an electron in a 2s orbital can also gain stability by virtue of being further away from

the core electrons in the 1s2 shell. How does this connect with the conventional ideas of

penetration? The presence of the radial node in 2s certainly means that a small amount of

the density lies close to the nucleus, but it also has another consequence: the outer (and much

larger) radial maximum lies further away from the nucleus, and therefore also further away

from the 1s2 core, than does the (only) radial maximum for the 2p orbital. The majority

of the 2s density is therefore further from the 1s2 core, is repelled less by it, and this is the

decisive factor in determining the order of filling (2s before 2p). In reality, the greater Zeff

for a 2s electron vs 2p at Li does not reflect more attraction of the 2s electron to the nucleus,

it reflects less repulsion of the 2s electron by the 1s2 core. Note that the emphasis here

is squarely on the outer radial maximum where the electron density is largest - this seems

intrinsically more satisfactory than focussing on the very small amount of electron density

close to the nucleus! Before moving on to the 4s/3d discussion, I acknowledge that I have

provided no concrete evidence to support the argument that we should focus on repulsion

as the central variable, and that the decisive feature of the 2s orbital is the position of the

outer radial maximum in the radial distribution function, not the small maximum close to

the nucleus (although I hope that the arguments are somewhat convincing!). It is possible

to do so using Hartree-Fock theory, and I present these arguments in the attached appendix

for the interested reader. The arguments are, however, somewhat complex and rely heavily

on the deviation of orbitals from their strictly hydrogenic forms, which is never addressed
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in standard texts. They also require a reasonable grasp of quantum mechanical phenomena

such as coulomb and exchange interactions. The appendix can safely be skipped at this stage

by those less interested in the quantum mechanical fine details!

The 4s/3d ordering controversy in the fourth period

I now return to the rather controversial question of the 4s/3d orbital ordering, a topic which

has provoked extensive debate in journals such as J. Chem. Ed. over the years. The bare

facts here are that the ground state configuration of K (atomic number 19) is Ar4s1 while

for isoelectronic transition metals cations such as Ti3+, it is Ar3d1. In essentially parallel

arguments to those made for Li, the preference for the 4s1 configuration at potassium is

typically rationalised by the highly penetrating nature of 4s, which allows it to ‘experience

more of the nuclear charge’. I will approach this problem first from the perspective of Zeff

and Slater’s rules. I will then also use Hartree-Fock theory to attach some hard numbers to

attraction and repulsion, to see what really lies behind the trends. I use Hartree-Fock theory

here but not in the previous sections because the arguments are less complicated, and do not

require an explicit consideration of the deviation from hydrogenic character of the orbitals.

Figure 3: Radial distribution functions for the valence and core orbitals of a transition
metal.)
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Before starting, however, I wish to comment on the rather unhelpful statement often

encountered in textbooks, that the 4s electrons are ‘added first’, in the sense that 4s is

filled before 3d in the periodic table, but are also ‘removed first’, in the sense that when we

ionise Ti (4s23d2) we get Ti3+ 3d1, not 4s1. This is unhelpful because ‘first’ means entirely

different things in the two cases: in the periodic sense in which we add 4s ‘first’, we are

starting from a neutral atom (Ar) and adding both a proton and an electron (and some

neutrons) simultaneously to form K, Ca etc. When we ionise Ti, we remove an electron

(4s ‘first’) but leave the proton in place, and this is an entirely different process – there

really is no reason why the two should be related! Look at the problem another way: we

could form Ti3+ by adding 3 protons to a K nucleus – admittedly, we would need a particle

accelerator to do so, but that does not alter the fact that the ground-state configuration will

surely be the same as if we had produced Ti3+ conventionally by ionising atomic Ti. The

ground state configuration of any atom/ion is a state function – it cannot possibly depend

on how that atom/ion was formed, and so it makes little sense to attempt to rationalise

that configuration based on the properties of the species from which it may or may not have

originated. To understand why Ti3+ is 3d1 and not 4s1, we must compare the stabilities of

those two configurations in Ti3+, not the stabilities of orbitals in the neutral atom, which

are irrelevant. A critical point that is often missed in the discussion of 4s vs 3d is that the

energy of an orbital depends on both n and Zeff (E = −13.6
(
Zeff/n)2

)
and so we need to

take both into account (this complication did not arise in the discussion of 2s vs 2p because

the two orbitals share the same principal quantum number). The lower value of n for the

3d orbital means that if Zeff happens to be equal for a 4s and a 3d electron (as it is in any

hydrogenic atom/ion), it will always be favourable to place the electron in 3d rather than

4s: this is the origin of the ‘natural’ order that appears in hydrogen. The critical question

in poly-electronic atoms is therefore not simply whether Zeff for 4s is greater than for 3d

(because it always is!) but rather whether the difference is great enough to overturn the

natural preference for occupation of 3d imposed by the difference in n. Let us formulate this
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problem by asking the following simple question: under what circumstances do the energies

of the 3d and 4s electrons become identical? i.e. when does the following equality hold?

Zeff (4s)

4
=
Zeff (3d)

3

Clearly it holds when the ratio of effective nuclear charges is

Zeff (4s)

Zeff (3d)
=

4

3

In cases where this ratio is less than 4/3 (in hydrogen, for example, where it is rigorously

1), 3d will lie below 4s while in cases where it exceeds 4/3, the order will be reversed and 4s

will fall below 3d. Let us put some flesh on the bones of this idea by using Slater’s rules to

calculate Zeff (these are, admittedly, crude, but as we will see, they bring out all of the key

factors that are relevant to the discussion). Consider atomic K, and ask whether the 19th

electron will prefer to occupy 4s or 3d. We know that the correct answer is 4s, so we should

anticipate that the ratio Zeff (4s)
Zeff (3d)

will exceed the critical value of 4/3.

For 1s22s22p63s23p64s1: Zeff (4s) = 19− 10× 1− 8× (0.85) = 19− 16.8 = 2.2

For 1s22s22p63s23p63d1: Zeff (3d) = 19− 10× 1− 8× (1.0) = 19− 18 = 1.0

Zeff (4s)

Zeff (3d)
=

2.2

1.0
= 2.2 >

4

3

and so we confirm that the difference in Zeff for the two electrons is indeed sufficiently large

to overturn the preference for occupation of 3d imposed by the principal quantum number,

n. If we follow this analysis through and ask where, in the periodic table, the crossover point

occurs where (core)4s1 becomes favoured over (core)3d1, we find that it is at Si, where Zeff

(4s)=1.45 and Zeff (3d) = 1.0. This is somewhat later than is observed experimentally -

the excited 4P (1s22s22p4s1) state of nitrogen is already more stable than 2P (1s22s22p23d1)
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- probably due to the approximations inherent in Slater’s rules. Nevertheless, the point is

clear that the crossover occurs well before K, which is the focus of attention in this discussion

simply because it is lightest element where the 4s/3d crossover is reflected in the ground-state

configuration rather than an excited state. What happens, then, if we consider a transition

metal cation with the same number of electrons as K – Ti3+ or V4+, for example. The rule

of thumb is that when we ionise a transition metal, we remove the 4s electrons ‘first’ (but

note the earlier comments about this phraseology being unhelpful!), so the configuration

will be 1s22s22p63s23p63d1 and not 1s22s22p63s23p64s1, as it was in K. Let us follow the

same argument through, except now use Ti3+ rather than K. The only difference is that the

nuclear charge has increased by 3 units: everything else is identical. The effective nuclear

charges for the two configurations are therefore:

1s22s22p63s23p64s1: Zeff (4s) = 22− 10× 1− 8× (0.85) = 22− 16.8 = 5.2

1s22s22p63s23p63d1: Zeff (3d) = 22− 10× 1− 8× (1.0) = 22− 18 = 4.0

Zeff (4s)

Zeff (3d)
=

5.2

4.0
= 1.3 <

4

3

has now fallen below the critical value of 4/3. The difference in Zeff is therefore no longer

sufficient to overturn the difference in n and we revert to the normal hydrogenic ordering.

Notice that Zeff (4s) is still greater than Zeff (3d), it is just that the ratio of the two is

no longer sufficient to overturn the difference in n. The preference for 3d1 for transition

metal ions simply reflects the fact that these ions are more hydrogenic than atomic K is (by

‘more hydrogenic’, I mean that the ratio (Zeff (4s))/(Zeff (3d)) is closer to one). Given the

approximations in Slater’s rules, one might argue that the value of 1.3 is only marginally

less than 4/3 and therefore that this conclusion is unsound. We can, however, generalise the

argument to any atom/ion Mq+ with 19 electrons (K, Ca+, Sc2+, Ti3+, V4+ etc etc), where

the ratio of effective nuclear charges is given by:
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Zeff (4s)

Zeff (3d)
=
Z − 16.8

Z − 18
=

19 + q − 16.8

19 + q − 18
=
q + 2.2

q + 1

Clearly this ratio tends towards a limiting value of 1.0 as q becomes very large – in other

words, the atom/ion becomes increasingly more hydrogenic as the positive charge on the

nucleus increases, and this conclusion is entirely independent of the precise values chosen for

the shielding constants. Moreover, if we change the number of electrons (comparing 4s13d1

vs 3d2, for example), the constants (2.2 and 1 in the equation above) will take different

values, but this doesn’t alter the fact that the ratio (Zeff (4s))/(Zeff (3d)) tends to 1 in the

limit of large q. Thus, the argument is entirely general: irrespective of the d electron count,

the electrons will always end up in the 3d orbitals rather than 4s in highly charged species.

Thus far the key feature of the argument for the preference for the 4s1 configuration over

3d1 in K is that Zeff is significantly greater in the former, but we have not yet addressed the

critical question of why Zeff is greater for 4s than for 3d. The classic textbook argument is

that the 4s orbital penetrates the core (1s22s22p63s23p6 for K) more effectively than 3d, and

so ‘experiences more of the positive charge’ (see the radial distribution functions in Figure

3 below). This seems, at first glance, to be borne out by the larger Zeff for 4s (2.2 vs

1.0 for 3d). We can, however, raise all of the same objections to this statement as we did

to the equivalent one for 2s vs 2p in Li: by absorbing the physically real electron-electron

repulsions into an artificially reduced attraction to the nucleus, we place an undue emphasis

on attraction rather than the (now deliberately concealed) repulsions. This, in turn, tempts

us to imagine that the only way to increase the stability of an electron (in 3d or in 4s) is to

increase the attraction to the nucleus, which fixes our attention on proximity of the electron

to the nucleus as the key factor. In the absence of other electrons this would, of course,

be entirely reasonable, but we know that in the absence of other electrons the 3d orbital is

more stable than 4s, not vice versa. This is of course perfectly natural: an electron in the

3d orbital is, on average, much closer to the nucleus than is 4s, and so in the absence of

competing repulsions, the greater attraction to the nucleus wins out. Note again here, as
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in the 2s/2p case, that the focus is squarely on the large outer radial maximum where the

vast majority of the electron density is, not on the much smaller radial maxima! So what

really changes when electrons are added to the core? As we progressively fill the inner shells,

the radial maximum of 3d is still closer to the nucleus than the outer maximum in 4s, so

the attraction to the nucleus is still stronger in 3d. However, the radial maximum of 3d is

now also much closer to the ever-expanding core, and 3d-core repulsions become particularly

acute when we reach the 3rd row and start to fill 3s and 3p, which have radial maxima in the

same region of space as 3d. This is why Slater’s rules differentiate 4s and 3d only through

their shielding by the 3s,3p core shell: each of the 3s,3p core electrons shields a 3d electron by

1.0 unit of charge, but a 4s electron by only 0.85 - all other shielding constants are identical.

The difference between 0.85 and 1.0 reflects the reality that the 4s electron is further away

from the 3s,3p core than is 3d, and therefore repelled less by it. In short, the real reason

for the higher Zeff for the 4s electron in K is not a greater attraction to the nucleus, but

rather the lower repulsions from the expanding core. The expression E = −13.6(Zeff/n)2

actually reflects the tension between attraction to the nucleus (captured in changes in n)

and repulsions from other electrons (captured in variations in Zeff ). In the example of K,

the presence of 18 core electrons means that wherever we place the 19th electron there has

to be a compromise. If it enters the 3d orbital, the attraction to the nucleus will still be

large (n = 3) but the repulsions to the core electrons will be large as well (which is why

Zeff = 1). If, instead, it occupies the 4s electron, some of the attraction to the nucleus will

be sacrificed because the radial maximum is further out (n = 4), but the repulsion from the

core electrons will also be reduced for exactly the same reasons (Zeff = 2.2). In the case

of K, the repulsion dominates and the 4s1 configuration is more stable. As we increase the

positive charge on the nucleus, both 4s and 3d electrons are attracted more strongly, but the

effect is amplified for 3d, simply because its radial maximum is closer to the nucleus. The

electron-electron repulsions, in contrast, will remain approximately constant, and the result

is that the attractive term becomes increasingly dominant over the more subtle differences
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in electron-electron repulsion that are captured in the shielding constants and the 19th

electron drops into the 3d orbital. In the limits of extreme high charges (think of U73+ as an

extreme example of a 19-electron ion!) the differential repulsions experienced by 4s and 3d

become completely insignificant against the background attraction to the nucleus, and the

ion becomes almost perfectly hydrogenic. This is the physical basis behind the argument

about the limiting behaviour of

Zeff (4s)

Zeff (3d)
=
q + 2.2

q + 1

given earlier: if q is large, the difference in shielding, 2.2 vs 1, becomes insignificant.

An analysis of the 4s/3d problem using Hartree-Fock theory.

How can I convince a sceptic that that electron-electron repulsion is really the factor that

we need to consider rather than the electron-nucleus attraction that is emphasised in most

textbooks? Hartree-Fock theory offers a platform to do this, because it simplifies the Hamil-

tonian in Equation 3 to a mathematically tractable form without completely sacrificing the

electron-electron repulsions, as is done in Equation 4. By considering the interaction of each

electron with the averaged charge density distribution of all others, the exact Hamiltonian

of Equation 3 becomes separable, and can be recast as a series of one-particle equations,

the Hartree-Fock equations (Equation 5), which have been the cornerstone of computational

quantum chemistry for the past 50 years. The eigenfunctions of these Hartree-Fock equa-

tions are the one-electron wavefunctions (“orbitals”) that are ubiquitous in chemistry. Note

that all three distinct contributions, the kinetic energy, the electron-nucleus attraction and

the electron-electron repulsion are explicitly formulated in the Hamiltonian: the repulsive

term V̂ee is simplified, but it is not concealed.

Ĥi = −1

2
∇2

i −
Z

ri
+
∑
j 6=i

1

rij
= −1

2
∇2

i −
Z

ri
+
∑
j 6=i

(Jij −Kij) (7)
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The repulsion of electron i by all other electrons, j, is introduced through the Coulomb

and exchange integrals, J and K:

Ĵijψi(1) =

∫
ψj(2)ψj(2)

1

rij
ψi(1) dτ (8)

K̂ijψi(1) =

∫
ψj(2)ψi(2)

1

rij
ψj(1) dτ (9)

J can be understood in classical terms as the Coulomb repulsion between two charge

clouds. The exchange integral K, in contrast, has no classical analogue: it is a purely

quantum mechanical phenomenon and is non-zero only when the two electrons have parallel

spin. The total repulsion between any pair of electrons is given by (Jij −Kij), so K serves

to reduce the repulsion between electrons with parallel spins. The fact that each electron

experiences repulsion by the average density due to the others means that it effectively loses

sight of the explicit position of the other electrons (the electronic motions are not correlated),

with the result that repulsions are somewhat overestimated. Correlation is generally a minor

effect in absolute terms, but if our goal is to calculate energies to compare to experiment then

its omission is a serious failing, and indeed Hartree-Fock theory is rarely used now for such

purposes. It has largely been supplanted by two distinct theoretical tools that do incorporate

electron correlation, density functional theory (DFT) and configuration interaction (CI).

However, neither of these theories is well suited to the analysis I set out here, where the

emphasis is on pairwise interactions between electrons in specific orbitals. In DFT, the

central variable is the total density rather than the orbitals, and so the orbital-by-orbital

repulsions are completely lost (indeed this is the whole point of DFT, because it simplifies

the calculations). At the other extreme, the CI wavefunction is built as a linear combination

of several different configurations and so, by construction, we have sacrificed the intuitive

picture of electrons residing in a specific subset of orbitals. Thus Hartree-Fock theory,

although somewhat dated, is uniquely well suited for the analysis set out below. There
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is, however, a complication in that Hartree-Fock theory treats occupied and unoccupied

orbitals differently. Each orbital (whether occupied or empty) is destabilised by repulsions

with all other electrons but electrons do not interact with themselves(!). So for an N-electron

system, the empty orbitals experience exactly N repulsive interactions while the occupied

orbitals experience only N-1 repulsions. The result is that the energies of occupied and

vacant orbitals are fundamentally different things which cannot be compared directly. This

clearly presents a problem if we seek to analyse the stabilities of 4s13d0 or 3d14s0 because

whichever configuration we choose to study, one of the orbitals is singly occupied while the

other is empty. We can, however, work around this problem by selecting systems where all

the orbitals that we wish to compare are equally populated. In the following analysis we

choose to compare the energies of the 3d and 4s orbitals in the 7S states of Cr, Mn+ and Fe2+,

where all orbitals of interest are now singly occupied (4s13d5). If our previous analysis using

Zeff works, we should find that the 3d orbitals should be progressively stabilised relative

to 4s as the positive charge increases, and, through this analysis, we hope to discover why

this is. Table 1 collects together the total energies (Etot) of the 4s and 3d orbitals, along

with its components, the kinetic (T), electron-nucleus attraction (Vne) and electron-electron

repulsion (Vee) terms (in atomic units). The total orbital energies confirm that the Hartree-

Fock calculations capture the essence trends: the 3d orbital is stabilised relative to 4s by 0.3

au for each increase in positive charge. Considering first the data for Cr, it is immediately

striking that the near degeneracy of the 4s and 3d orbitals comes about as a result of the

cancellation of very different component parts, T , Vne and Vee. For the 4s electron, a rather

weak attraction to the nucleus (Vne = –8.29 au) is offset by equally weak electron-electron

repulsions (Vee = 7.44 au) and a small kinetic energy term (T = 0.63 au). For a 3d electron,

in contrast, the attraction to the nucleus is three times larger (Vne = –24.13 au), but so too

is the sum of the electron-electron repulsion and kinetic energy (Vee = 18.86 au, T = 4.91

au). After all these terms are added up, the difference in total energies between 4s and 3d

is only 0.14 au. Note that in no sense does the 4s electron ‘experience a greater attraction
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to the nucleus’ than 3d - Vne is three times larger for 3d, simply because 3d is much closer

to the nucleus!

Table 1: Components of the self-consistent energies of the 4s and 3d orbitals of the 7S states
of Cr, Mn+ and Fe2+ (in au) at the HF/VTZ level.

T Vne Vee Etot

Cr

4s 0.63 –8.29 7.44 –0.22

3d 4.91 –24.13 18.86 –0.36

Mn+

4s 1.13 –10.96 9.28 –0.54

3d 6.50 –29.26 21.84 –0.93

Fe2+

4s 1.71 –13.52 10.86 –0.95

3d 8.13 –34.25 24.47 –1.65

Hartree-Fock theory allows us to go a step further and decompose the total electron-

electron repulsion into separate components for each pair of electrons, which are shown in

Figure 4. As noted above, the total Vee is very much greater for a 3d electron (+18.86 au)

than for a 4s electron (+7.44 au), and the major contribution to this difference comes from

repulsions to the electrons in the 3s,3p core, which have radial maxima in the same region

as 3d. So the repulsion between a 3d electron and each 3p electron (V(3d−3p)) costs 0.72 au

while the repulsion between the 4s electron and each 3p electron (V(4s−3p)) costs only 0.32

au. This is the physical phenomenon that underpins the difference between Slater’s shielding

constants (1.0 for 3d but only 0.85 for 4s) and, ultimately therefore, the differences in Zeff .

Note once more the subtle change in emphasis: that the 4s electron experiences a higher

effective nuclear charge than 3d is not in doubt, but it is not because the inner radial maxima

of 4s allows the electron to access the nucleus – rather it is because the very large and diffuse

outer radial maximum allows it to avoid all the other electrons. Given the huge variations
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in the component parts of the total energy, it should probably come as no surprise that it

has proven so difficult to explain trends in the relative order of 3d and 4s in terms of a single

‘catch-all’ parameter, Zeff .

Figure 4: Components of the electron-electron repulsion in the 7S state of Cr.)

If we now look at how the various components of the orbital energies depend on the

charge on the ion, we note that the overall 0.3 au relative stabilisation of the 3d orbitals per

unit increase in charge is also a result of compensation between much larger fluctuations in

the individual components of the energy. The magnitudes of all three components in Table 1,

T , Vne and Vee, inevitably increase with charge as the orbitals become more compact. For an

electron in the 3d orbital, a unit increase in charge causes a 5.1 au increase in |Vne| set against

2.8 au increase in Vee and 1.6 au increase in T . For an electron in the 4s orbital, in contrast,

all three components are affected to a lesser degree: |Vne| increases by only 2.6 au while

Vee and T increase by 1.8 au and 0.5 au, respectively. The dominant factor in stabilising

the 3d orbital over 4s is therefore the very dramatic increase in Vne = 〈Z
ri
〉 experienced by

the 3d electron: this is, again, simple electrostatics - the 3d electron is closer to the nucleus

than 4s, so is stabilised more by an increase in charge, Vi = (qiqj)/rij. The electron-electron

repulsion, Vee, changes much less down the series because the number of electrons remains

the same – the small increase is a secondary consequence of the contraction of the orbitals.
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The result is, therefore, that the delicate balance between attraction and repulsion is tipped

progressively in favour of the former as the positive charge increases, leading to occupation

of the 3d orbital. This is the physical basis for the argument that the hydrogenic order will

always be restored in the limit of high charge on the ion. A perspective on the Madelung

order and the periodic table The balance between attraction to the nucleus and repulsion

with other electrons that lies at the heart of this article can be used to understand the

so-called ‘Madelung order’ that determines the shape of the periodic table. The Madelung

rule states that orbitals are filled in order of increasing (n + l) and, in cases where (n + l)

is equal, the orbital with higher n is filled first.

Figure 5: The Madelung order of filling in the periodic table.)

We have already discussed the 2s/2p balance, and concluded that the greater repulsion

with the 1s2 core incurred by the 2p electrons dictates that it is the 2s orbital (n + l

= 2) that is occupied by the third electron in Li and not 2p (n + l = 1). Likewise we

have seen that when we reach the start of the 4th period, the 19th electron enters the 4s

orbital in preference to 3d because the former incurs less repulsion from the core (and in
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particular from the 3s23p6 shell). It is often emphasised that the Madelung order refers

only to neutral atoms – as we have seen, in the cations the differential shielding between 4s

and 3d becomes less important compared to the attraction to the nucleus, the ion becomes

increasing hydrogenic, and the order of filling is determined first by increasing n, and then

by increasing l. Even for the neutral transition metal atoms, however, there are a number

of well-documented exceptions to the Madelung rule, the most well-known of which is Cr,

where the ground-state configuration is 4s13d5 and not 4s23d4. This reflects the subtle

re-balancing of attraction and repulsion associated with the half-filled 3d sub-shell: the

exchange interaction between electrons of the same spin means that a 5th electron can enter

the 3d sub-shell without incurring as much repulsion (primarily to the other 3d electrons) as

a 6th or 7th electron would, and as a result the increased attraction to the nucleus available

in the 3d orbital is sufficient to tip the balance in favour of 4s13d5. The next key ‘decision

point’ in the periodic table comes at the start of the 6th period at element 55 (Cs), at which

point the 54-electron core contains 1s22s22p63s23p63d104s24p64d105s25p6. The 55th electron

could then, in principle, occupy any one of the 6s, 4f or 5d orbitals, and the Madelung order

determines that the first of these is preferred and indeed Cs has the 6s1 configuration. The

energetic balance between 6s1, 5d1 and 4f 1 is determined by precisely the same factors as

the 4s1/3d1 balance: the 4f 1 configuration maximises attractions to the nucleus because the

radial maximum is close, but also maximises the repulsions with the core electrons. The

6s1 configuration, in contrast, minimises repulsions with the core but only at the expense

of sacrificing much of the attraction to the nucleus. The 5d1 configuration represents a

compromise situation, where the attraction to the nucleus is intermediate (less than for 4f

but greater than for 6s), as is the repulsion from the core (again, less than for 4f 1 but more

than for 6s1). The total energies of the three configurations are then determined by the sum

of attractive and repulsive terms that differ widely, and it is no surprise that the identity

of the most stable one is hard to predict. It is also no surprisethat there are exceptions

to the Madelung order as we cross the lanthanide series - the ground state configuration of
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La, for example, is 6s25d1 and not 6s24f 1, as the Madelung order would demand and Gd

is 6s25d14f 7 rather than 6s24f 8. In the latter case, the very strong repulsions experienced

by an 8th electron in the 4f shell tips the balance in favour of occupying the 5d, despite the

necessary sacrifice in attraction to the nucleus. As we increase the positive charge, however,

all of the subtle differences in the repulsions experienced by 6s/5d/4f electrons become

insignificant relative to the attraction to the increasing positive charge at the nucleus, and

so the hydrogenic order is restored and all cations have the 4fn configuration.

Figure 6: Spatial arrangement of valence and core orbitals at the start of the 6th period.)

Summary

The concept of an effective nuclear charge is without doubt a powerful one, but by concealing

the mathematically difficult electron-electron repulsions behind the cloak of a reduced nu-

clear charge, we promote the unbalanced view that stability is solely a matter of maximising

attractive forces. In fact, stability is always a compromise between attraction and repulsion,

and can therefore be increased either by increasing the former or by reducing the latter.

From this rather different perspective, we see that the stability of the 1s22s1 configuration

relative to 1s22p1 in Li arises not because the inner radial maximum of the 2s orbital en-
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hances interactions with the nucleus, but rather because its diffuse outer radial maximum

minimises repulsions with the 1s2 core. The same arguments provide a coherent picture of

the controversial 4s/3d crossover at the start of the first transition series. Placing the 19th

electron of K or Ti3+ in the 3d orbital maximises the attraction to the nucleus, but incurs

strong repulsions with the 3s and 3p core electrons. Occupying the 4s orbital, in contrast,

sacrifices much of the Coulomb attraction to the nucleus, but also attenuates much of the

repulsion with the core electrons. Which of these factors wins out depends on the system:

the larger nuclear charge in cations amplifies the attractive term, favouring the 3d1 config-

uration, while electron-electron repulsions hold sway in neutral species such as K, driving

the adoption of a 4s1 configuration. The Madelung order that underpins the structure of

the periodic table can also be understood in these terms. The principal quantum number

determines, to a very good approximation, the position of the outer (and largest) maximum

in the radial distribution function. In hydrogen, where attraction to the nucleus is all that

matters, orbitals with lowest principal quantum number are filled first. As we move across

the periodic table, however, orbitals with lower principal quantum numbers suffer more re-

pulsions from the ever-expanding core than those with higher principal quantum numbers,

simply because they are closer to it. There are, therefore, inevitably crossover points where

orbitals or different quantum numbers are near degenerate as a result of the balance be-

tween attraction and repulsion. Classic cases occur at the start of the 4th and 5th periods,

where nd (strong attraction, strong repulsion) and (n+1)s (weak attraction, weak repulsion)

are almost degenerate and also at the start of the 6th and 7th periods, where nf (strong

attraction, strong repulsion), (n+ 1)d (intermediate attraction, intermediate repulsion) and

(n+ 2)s (weak attraction, weak repulsion) are close.
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Methods

The Hartree-Fock calculations and the decomposition of the electron-electron repulsion terms

were performed using a locally developed python programme, Oxelec. The code is available at

http://mcgrady.chem.ox.ac.uk/resources.html. For the calculations on Ne the uncontracted

(23s16p) Universal Gaussian Basis Set of Jorge et al. was used as a high degree of flexibility

was required to describe both the neutral atom and the highly charged hydrogenic reference

states. For the comparison of 4s and 3d in the transition metals Ahlrich’s valence triple zeta

(VTZ) basis set was used.

�

Appendix: analysis of the origins of the 2s/2p ordering

in the second period using Hartree-Fock theory.

Ideally, we would approach this problem by assessing the relative stabilities of the 2s and 2p

orbitals in Li, where the difference is reflected in the ground-state configuration. However,

the Hartree-Fock methodology gives an unbalanced treatment of the energies of occupied

and virtual orbitals (as noted in the 4s/3d discussion) which complicates the comparison

when one orbital is filled and the other empty. We therefore recast the problem by focussing

on Ne, where all orbitals (2s and 2p) are equally occupied, and we ask the simple question:

why is the 2s orbital more stable than 2p in this case? The 2S ionisation in the photoelectron

spectrum of Ne lies 29 eV below 2P , so the difference in orbitals energies is clearly very pro-

nounced. The final results of the Hartree-Fock calculation, labelled “self-consistent orbitals”,

are summarised at the bottom of Table 2, where the 2s orbital is indeed more stable than

2p: the energies (Etot) are –1.93 au and –0.85 au respectively, a difference of 29.4 eV. The

calculations seem to reproduce the experimentally observations more than adequately, offer-

ing some encouragement that the decomposition of the orbital energies into their component
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parts (kinetic energy, T , attraction to the nucleus, Vne and electron-electron repulsion, Vee)

will be meaningful. The data in Table 2 suggest, at first glance, that the greater stability

of the 2s orbital can be traced primarily to a stronger interaction with the nucleus: Vne =

–16.33 au for 2s vs –14.35 au for 2p), apparently consistent with the textbook explanation

that the 2s electron ‘experiences more of the nuclear charge’. There is, however, a twist in

the tale. In textbook explanations, the orbitals are generally assumed to adopt their hydro-

genic shapes (or at least it is never explicitly stated that they do not!). The electrostatic

interaction between a nucleus, A, and a charge distribution represented by ψ∗ψ is given by

the expectation value:

Vne = 〈ψ|ZA

r12
|ψ〉 = ZA 〈 1

r12
〉

which, in a hydrogenic atom or ion, depends only on the principal quantum number n and

not on l (its value is in fact ZA/n
2 ). The very fact that Vne (and indeed T ) are not identical

for 2s and 2p therefore immediately alerts us to the fact that two orbitals must deviate from

their hydrogenic forms. So if we want to argue that “greater attraction to the nucleus” is

behind the greater stability of 2s vs 2p, we have to address the question of why and how the

orbitals deviate from their hydrogenic forms. A logical starting point is therefore to ask how

the total energy and its various components (Vne, Vee and T ) would behave if the orbitals

were forced to retain their hydrogenic form (which, after all, is the unstated assumption

in most textbooks). In Figure A1(a) radial distribution functions for the hydrogenic 1s,

2s and 2p orbitals are shown, calculated using a positive charge of Z = +7.5 at the nucleus

(“hydrogenic” means that there are no electron-electron repulsions). This choice of Z requires

further comment: it was selected because it generates 2s and 2p orbitals with radial maxima

at approximately the same positions as those in the self-consistent solutions (vide infra). In

contrast if we assume perfect screening (Z = +1) or zero screening (Z = +10), the resultant

orbitals are much more diffuse or much more contracted, respectively, than the self-consistent

ones. The choice of Z = 7.5 therefore a reasonable compromise, but the key conclusions that

drawn below do not depend in any significant way on the precise value.
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Figure 7: Radial distribution functions and components of the electron-electron repulsion in
the Ne atom (a) in the hydrogenic limit (Z = +7.50) and (b) at self-consistency.)

The total energies of the 2s and 2p electrons in the Z = 7.50 hydrogenic case (Table

2, top) are identical (= –7.03 au), as are their components T (= +7.03 au) and Vne (=

–14.06 au), as they must be because neither depends on l. If the 10 electrons are then

added without allowing the orbitals to relax (middle entry in Table 2, “frozen orbitals” and

also Figure A1(a)) the interaction with the nucleus (Vne) remains absolutely unchanged and

identical for 2s and 2p, as it must do according to equation 6. Nevertheless, we immediately

recover the correct ordering of the total energies, 2s < 2p, and in fact the difference of

1.34 au is even larger than in the self-consistent solution. However, the difference is now
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contained entirely in the electron-electron repulsion term, which is higher for a 2p electron

than its 2s counterpart – this is an inevitable conclusion, because Vne and T cannot change.

The more punitive electron-electron repulsion experienced by a 2p electron is a cumulative

effect of interactions with the two electrons in the 1s core (V1s−2p= 1.75 au), with the two

electrons in the 2s orbital (V2s−2p = 1.11 au) and, most damagingly, with the other five 2p

electrons (V2p−2p= 1.47 au). The corresponding numbers for an electron in the 2s orbital

are all significantly lower: (V1s−2s= 1.49 au, V2s−2s = 1.13 au). These differences can all be

understood by reference to the radial distribution functions in Figure 1. The 2p orbital has

only a single radial maximum, which means that all the 2p electrons are confined to a narrow

shell. The 2s orbital, in contrast, extends across a much wider range of radii on either side

of its node, with the result that two 2s electrons are, on average, further apart from each

other than are two 2p electrons. The 2p-2p repulsions are therefore much worse than 2s-2s.

Generalising this argument, electron-electron repulsions will always be strongest in orbitals

that lack a radial node, i.e. 2p, 3d and 4f, and many of the unique properties of the first

transition series and the lanthanides can be traced to precisely this feature. The presence

of a radial node in the 2s orbital places the outer (and much larger) radial maximum at a

greater distance from the 1s2 core than the radial maximum for 2p, with the critical result

that V1s−2s is lower than V1s−2p. The key point here is that it is the position of the outer

radial maximum in 2s that really matters here, not the inner one.

Textbook treatments do not usually extend to the possibility that orbitals may not

be hydrogenic, but let us explore what changes when the orbitals are allowed to relax to

their self-consistent form. The transition from the hydrogenic situation to self-consistency

represents a compromise between kinetic energy, attraction and repulsion: the algorithm

seeks to relax the orbitals in such a way that the attraction to the nucleus is maximised

while the kinetic energy and electron-electron repulsions are minimised. This is necessarily a

compromise because a build-up of electron density near the nucleus maximises the Coulomb

attraction to the nucleus, but also the maximises repulsion between the electrons. Conversely

29



Table 2: Components of the self-consistent energies of the 2s and 2p orbitals of Ne from
Hartree-Fock theory (all values in atomic units)

T Vne Vee Etot

Hydrogenic (Z = 7.50)

2s 7.03 –14.06 –7.03

2p 7.03 –14.06 –7.03

Orbitals frozen in hydrogenic form

2s 7.03 –14.06 10.75 +3.72

2p 7.03 –14.06 12.27 +5.24

Self-consistent orbitals

2s 5.21 –16.33 9.18 –1.93

2p 4.26 –14.35 9.24 –0.85

a more diffuse electron density distribution alleviates some of the electron-electron repulsion

but only at the expense of weaker attraction to the nucleus. The orbitals which deviate most

from their hydrogenic form will be those that experience the most punitive electron-electron

repulsions in the first place – i.e. the 2p orbitals (V2p−2p= 1.47 au vs V2s−2s= 1.13 au). These

2p-2p repulsions are indeed much reduced in the self-consistent orbitals (V2p−2p= 1.04 au),

where the maximum in the 2p radial distribution function has become much broader and

more diffuse. Inevitably, this also means that Vne is less attractive and the kinetic energy,

T , is substantially reduced. The 2s radial distribution function, in contrast, rather similar

in the hydrogenic and self-consistent cases, simply because the 2s electron experienced less

punitive electron-electron repulsions in the first place: V2s−2s, for example, remains relatively

unchanged from its hydrogenic value (1.02 au vs 1.13 au). So finally we have all the necessary

information to answer the question of why the 2s electron is more stable than 2p in Ne. If

we start from a hydrogenic reference point, we see that 2p electrons are repelled by the

other electrons to a far greater extent than are the 2s. As a result, the self-consistent 2p

orbitals become more diffuse in order to alleviate the repulsion, which has the side effect of
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reducing the interaction with the nucleus. Nevertheless, the sum of reduced repulsion and

reduced attraction results in a net stabilisation. The 2s orbitals, in contrast, deviate less

from their hydrogenic starting point simply because they are naturally more diffuse to start

with, and are therefore less strongly repelled by other electrons. In the final (self-consistent)

solution, the repulsions experienced by an electron in 2s or 2p are approximately equalised,

but the 2p electron has had to sacrifice a greater fraction of its attraction to the nucleus

in order to achieve this. In short, Vne is indeed more attractive for a 2s electron compared

to 2p, but it is not because the 2s electron is pulled towards the nucleus (compared to the

hydrogenic reference), it is because the 2p electron is pushed away from the 1s2 core! So with

the emphasis now firmly on electron-electron repulsion as the root cause of orbital stability,

where does ‘penetration’ come into the argument? The number or radial nodes an orbital

has clearly correlates with stability: 2s has one more node than 2p and it is indisputably

more stable, but it is the outer maximum in the 2s radial distribution function that matters:

it lies further from the nucleus, allowing it to better avoid the other electrons. Although

we cannot address directly the question of the preference of the lithium atom for the 1s22s1

configuration over 1s22p1 using Hartree-Fock theory, we can extrapolate the arguments made

above for Ne . The V2s−2s, V2s−2p and V2p−2p components of the repulsion are clearly irrelevant

in this context because the 2s,2p manifold contains only one electron. The greater stability of

the 2s orbital must, therefore, have its origins in different repulsions with the electrons in the

1s2 core. The smaller value of V1s−2s compared to V1s−2p is therefore the key factor, forcing

the 2p electron to sacrifice more of its Coulomb attraction to the nucleus to alleviate the

punitive electron-electron repulsions at self-consistency. Again note the change in emphasis:

the 2s orbital is certainly stabilised relative to 2p, but not because the small inner radial

maximum of 2s affords better attraction to the nucleus - rather it is because the diffuse outer

radial maximum reduces the repulsions to the 1s2 core electrons.
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