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2 Some basics
2.1 The time-independent Schrödinger equation
In studies of molecular electronic structure, we seek solutions of the time-independent Schrödinger equation,

− ~2

2m
∇2ψ + V ψ = Eψ (1)

where m is the mass of an electron, V is the potential and ∇2 is the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2)

The wavefunction, ψ, must be single-valued, finite and continuous.

2.2 Born-Oppenheimer approximation
The Hamiltonian, Ĥ, for a system with n electrons and N nuclei is then given by

Ĥ = − ~2

2m

n∑
i

∇2
i −

e2

4πε0

n∑
i

N∑
a

ZA

riA
+

e2

4πε0

n∑
i

n∑
j>i

1

rij
+

e2

4πε0

N∑
A

N∑
B>A

1

RAB
(3)

Figure 1: Potential
energy surface for a
diatomic molecule.

If we regard the nuclei as being fixed in space, we can factorise the total wavefunction:

Θ(R, r) = ψ(r)Ω(R) (4)

and the electronic part becomes:

Ĥelψ =

− ~2

2m

n∑
i

∇2
i −

e2

4πε0

n∑
i

N∑
a

ZA

riA
+

e2

4πε0

n∑
i

n∑
j>i

1

rij

ψ = Eψ (5)

and the nuclear part:

ĤnucΩ(R) =

[
+

e2

4πε0

N∑
A

N∑
B>A

1

RAB

]
Ω(R) = EnucΩ(R) (6)

The final term, Enuc is independent of the position of the electrons, and adds a
constant contribution to the energy (at fixed distance). The sum of electronic and
nuclear energies defines the potential energy curve (Figure 1), the electronic energy
which depends parametrically on the nuclear coordinates.

3 H2
+ : linear variation theorem

ψtrial =
∑
n

cnχn = caχ1sa + cbχ1sb (7)

Etrial =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

=
〈(caχ1sa + cbχ1sb)|Ĥ|(caχ1sa + cbχ1sb)〉
〈(caχ1sa + cbχ1sb)|(caχ1sa + cbχ1sb)〉

Following the process set out in Prof Kirrander’s ‘Valence’ lecture 4, minimisation of the trial wavefunction
gives the following secular determinant:

det (H − ES) =

∣∣∣∣∣∣Haa − ESaa Hba − ESba

Hab − ESab Hbb − ESbb

∣∣∣∣∣∣
3



with eigenvalues that we can formulate in terms of matrix elements

E± = E1σg/1σu
=
Haa ±Hab

1± Sab

Haa = 〈χ1sa|Ĥ|χ1sa〉 Hab = 〈χ1sa|Ĥ|χ1sb〉 Sab = 〈χ1sa|χ1sa〉

The molecular orbitals also emerge as the eigenfunctions of the secular equations, but in this case we can
anticipate them from symmetry considerations alone:

ψ1σg/1σu
=

1

2(1± Sab)
(χ1sa ± χ1sb)

We will deal exclusively with H2 from now on, so the ‘1s’ subscript will be assumed and an orbital on
hydrogen atom a referred to simply as χa etc. To make further progress we need to convert the abstract
“ψ“, “Haa”, “Hab” etc. into hard numbers, and to do that we have to define Ĥ!

3.1 The Hamiltonian for H2
+:

We can expand the general expression in Equation 5 to generate the Hamiltonian for H2
+

Ĥel = − ~2

2m
∇2 − e2

4πε0

Z

ra
− e2

4πε0

Z

rb
(8)

Figure 2: Compo-
nents of the Hamilto-
nian for H2

+.

Equation 8 is given in SI units (distance in metres, mass in kg, charge in coulombs,
energy in Joules). It is more convenient to express it in atomic units (distance
in multiples of a0, the Bohr radius, mass in multiples of me, charge in multiples
of e, permittivity in multiples of 4πε0, energy in multiples of Hartrees (atomic
units)).

a0 = 0.529× 10−10m = 0.529 Å

e = 1.6022× 10−19 C

me = 9.1095× 10−31 kg

1 Hartree = 1 au = ~2

mea2
0
= 4.3598× 10−18 J = 27.212 eV

In which case the Hamiltonian simplifies to:

Ĥel = −1

2
∇2 − 1

ra
− 1

rb
(9)

and the matrix element Hab to:

Hab = 〈χa| −
1

2
∇2 − 1

ra
− 1

rb
|χb〉 = 〈χa| −

1

2
∇2|χb〉+ 〈χa| −

1

ra
|χb〉+ 〈χa| −

1

rb
|χb〉

So in order to calculate the energy for H2
+, we ∴ need to evaluate integrals of the following types, kinetic

energy (T ), electron-nucleus attraction (A) and overlap (S):

T = −1

2
〈χa|∇2|χb〉 A = −〈χa|

1

ra
|χb〉 S = 〈χa|χb〉 (10)

When we get to H2, we will find that we also need to calculate a fourth type of integral, the electron-electron
repulsion (g).

g = 〈χa(1)χa(2)|
1

r12
|χb(1)χb(2)〉 (11)
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4 Basis functions
In order to evaluate these integrals, we need to choose a mathematical representation of the orbitals, χa

For discrete molecules, there are two common choices, Slater-type orbitals and Gaussian-type orbitals
(Figure 3). For solid-state (periodic) calculations, there is a third choice, a basis set of plane waves, but we
will not be concerned with those here.

Figure 3: Slater-type and Gaussian-type basis functions.

4.1 Slater-type orbitals (STOs):
STO = N1r

n−1e−ζr.Ylm(θ, φ) (12)

N1 is the normalising constant. Ylm(θ, φ) is a spherical harmonic, controlling angular dependence ζ is a
measure of how contracted the function is (larger ζ implies more contracted). In very simple (minimal) basis
sets, ζ is related to Slater’s effective nuclear charge, which controls radial behaviour, and can be calculated
using Slater’s simple empirical rules. Slater-type functions replicate the behaviour of real atomic orbitals, so
they are an intuitively appealing option.

4.2 Gaussian-type orbitals (GTOs):

GTO = N1x
iyjzke−αr2 = N1x

iyjzke−α(x2+y2+z2) (13)

Angular properties are specified by i, j, k:

(0, 0, 0) = s (1, 0, 0) = px (1, 1, 0) = dxy etc.

The major difference compared to Slater functions is that the exponential decay is e−αr2and not e−αr, which
means that the orbital decays too quickly at large r, and fails to reproduce the cusp at the nucleus found in
real atomic orbitals (see Figure 3). Thus they are less accurate representations of a real atomic orbital than
Slater functions. However, GTOs have two major advantages:

(1) GTOs are separable in the x, y and z directions:

GTO = N1x
iyjzke−α(x2+y2+z2) = N1

(
xie−αx2

)(
yje−αy2

)(
zke−αz2

)
the same cannot be said of STOs:

STO = N1e
−ζ

√
x2+y2+z2 6= N1e

−ζxe−ζye−ζz

(2) the product of two GTOs on different centres is just a different GTO centred somewhere in between (the
Gaussian Product Theorem, or GPT for short). To illustrate this, consider the product of two s-type
gaussians (i = j = k = 0) with equal exponents, α, one centred at x = 0, the other at x = a

5



G1 = N1e
−αx2

G2 = N2e
−α(x−a)2

G1G2 =N1N2e
−αx2

e−α(x−a)2 = N1N2e
−α(x2+(x−a)2)

=N1N2e
−α(2x2−2ax+a2) = N1N2e

−2α(x2−ax+ a2

2 )

=N1N2e
−2α((x− a

2 )
2+ a2

4 )

=N1N2e
−α a2

2 e−2α(x− a
2 )

2

(14)

Figure 4: The product of two gaussian functions.

i.e. the product is another Gaussian with exponent 2α, centred half way between the original basis functions
(x = a/2) and scaled by e−α a2

2 (Figure 4). The GPT makes the computation of all integrals much easier
for Gaussian functions than for Slater functions. It is harder, but still tractable, to calculate the 1-electron
integrals (overlap, kinetic energy, electron-nucleus interaction) using a Slater-type basis, but if electron-
electron repulsion integrals are needed (as they are for anything with more than 1 electron!), Slater-type
functions are generally a very poor choice.

5 Evaluation of matrix elements.
5.1 Elements of the overlap matrix, Sab

Example 1: an overlap integral between two s orbitals described by gaussians with exponent α on different
atoms separated by a distance r:

χa = N1e
−α(x2+y2+z2) χb = N2e

−α(x2+y2+(z−r)2)

Sab = 〈χa|χb〉 = N1N2

∫∫∫ +∞

−∞
e−α(x2+y2+z2)e−α(x2+y2+(z−r)2)dxdydz

6



First, we need to normalise each basis function.

1 = N2
1

∫∫∫ +∞

−∞
e−α(x2+y2+z2)e−α(x2+y2+z2)dxdydz

= N2
1

∫ +∞

−∞
e−αx2

dx+

∫ +∞

−∞
e−αy2

dy +

∫ +∞

−∞
e−αz2

dz

= N2
1

( π
2α

)1/2 ( π
2α

)1/2 ( π
2α

)1/2
= N2

1

( π
2α

)3/2
N1(= N2) =

(
2α

π

)3/4

where we have used the standard integral ∫ +∞

−∞
e−bx2

dx =

√
π

b
(15)

now return to the required overlap integral:

Sab = N1N2

∫∫∫ +∞

−∞
e−α(x2+y2+z2)e−α(x2+y2+(z−r)2)dxdydz

=

(
2α

π

)3/4(
2α

π

)3/4 ∫ +∞

−∞
e−2αx2

dx

∫ +∞

−∞
e−2αy2

dy

∫ +∞

−∞
e−α(z2+(z−r)2)dz

=

(
2α

π

)3/2 ( π
2α

)1/2 ( π
2α

)1/2 ∫ +∞

−∞
e−α(z2+(z−r)2)dz

use the Gaussian product theorem (Equation 14) to deal with the integral in z:∫ +∞

−∞
e−α(z2+(z−r)2)dz = e−

αr2

2

∫ +∞

−∞
e−2α

(
z− r

2

)2
= e−α r2

2

( π
2α

)1/2
Sab =

(
2α

π

)3/2 ( π
2α

)1/2 ( π
2α

)1/2 ( π
2α

)1/2
e−α r2

2 = e−α r2

2

Using r = 0.77 Å and α = 0.4166, we get Sab = 0.643 (this number is relevant later: don’t forget to convert
the distance to atomic units: 0.77 Å = 0.77/0.529177 = 1.455 au).

We can generalise this expression for the case where two s-type basis functions separated by a distance r
have different exponents, α and β

Sab =

(
2α

π

)3/4(
2β

π

)3/4(
π

α+ β

)3/2

e−
αβ

(α+β)
r2 (16)

The expression is somewhat more complicated again if p, d or f orbitals are involved.
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5.2 Elements of the kinetic energy matrix, Tab

Example 2: Calculate the kinetic energy of an electron in a 1s orbital (i.e. both basis functions are located
on the same centre), Taa = 〈χa|T̂ |χa〉

χa = N1e
−α

(
x2+y2+z2

)

Taa = −N
2
1

2
〈e−α

(
x2+y2+z2

)
|∇2|e−α

(
x2+y2+z2

)
〉

= −N
2
1

2

∫∫∫ +∞

−∞
e−α

(
x2+y2+z2

)( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
e−α

(
x2+y2+z2

)
dxdydz

Taking the x component (y and z give identical contributions), we need to evaluate:

Taax = −N
2
1

2

∫
e−αx2 ∂2

∂x2

(
e−αx2

)∫ +∞

−∞
e−2αy2

dy

∫ +∞

−∞
e−2αz2

dz

∂2

∂x2

(
e−αx2

)
=
(
4α2x2 − 2α

)
e−αx2

So we need to evaluate 2 integrals and sum them:

Taax = −N
2
1

2

[
4α2

∫ +∞

−∞
x2e−2αx2

dx

∫ +∞

−∞
e−2αy2

dy

∫ +∞

−∞
e−2αz2

dz − 2α

∫ +∞

−∞
e−2αx2

dx

∫ +∞

−∞
e−2αy2

dy

∫ +∞

−∞
e−2αz2

dz

]
= −2α2

(
2α

π

)3/2(
1

4α

)( π
2α

)3/2
+ α

(
2α

π

)3/2 ( π
2α

)3/2
= −α

2
+ α =

α

2

where we have used a second standard integral:∫ +∞

−∞
x2e−bx2

dx =
1

2b

√
π

b
(17)

and because the total kinetic energy integral is symmetric in x, y, z:

Taa = Taax+ Taay + Taaz = 3Taax =
3α

2

So for an s orbital with α = 0.4166, we get Taa = 0.625 (again, we use this later).

Again, we can generalise to the case for s orbitals on different atoms with different exponents:

Tab =

(
2α

π

)3/4(
2β

π

)3/4(
π

α+ β

)3/2
αβ

α+ β

[
3− 2αβ

α+ β
r2
]
e−

αβ
α+β |ra−rb|2 (18)

5.3 Elements of the nucleus-electron attraction matrix, Aab

For the electron-nucleus attraction , the most complicated situation is where we have two basis functions
on different atoms, χa and χb, and the nucleus on a 3rd atom, C. What we do is use the GPT to express
the product of the two basis functions on χaχb as a third gaussian, located at some point between a and b
(point p in the Figure below). We then calculate the coulomb interaction between the electron distribution
described by the gaussian function at p and the nucleus at C.

8



Figure 5: Positions of atoms a, b, C in the calculation of Aab.

The coulomb integral is trickier than overlap or kinetic energy because of the 1/r terms, for which we need
Fourier transform techniques. However, relatively simple closed analytical forms do exist. For interactions
involving only s orbitals, the appropriate expression is:

Aab =
N∑
C

〈χa|
−ZC

rC
|χb〉 (19)

= −
N∑
C

(
2α

π

)3/4(
2β

π

)3/4(
2π

α+ β

)
ZC e−

αβ
α+β |ra−rb|2F0

[
(α+ β)

∣∣∣∣ra − rb
2

− rC

∣∣∣∣2
]

(20)

where the summation runs over all N nuclei, ZC is the charge on nucleus C and F0 is the ’Boys’ function
(after Frank Boys).

F0 [t] =
1

2

(π
t

)(1/2)
erf

(
t1/2

)
erf (x) =

2√
π

∫ x

0

e−u2

du F0 [0] = 1

Figure 6: Error Function, erf(t)

The rather complicated expression in Equation 20 takes simpler forms under certain limiting cases (rc = 0
or rc → ∞):
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Example 3: Calculate the attraction between the nucleus in a hydrogen atom and its 1s electron described
by a single gaussian function,

χa =

(
2α

π

)3/4

e−αr2

In this case, both basis functions and the nucleus are centred at the same place (the origin!), so:

|ra − rb| = 0 e−
αβ

α+β |ra−rb|2 = 1∣∣∣∣ra − rb
2

− rc

∣∣∣∣ = 0 ∴ t = 0 ∴ F0 [t] = 1

Aaa = 〈χa

∣∣∣∣−1

ra

∣∣∣∣χa〉 = −
(
2α

π

)3/2 (π
α

)
= −23/2

(α
π

)1/2
note that Taa ∝ α but Aaa ∝

√
α.

Example 4: Calculate the attraction 〈χa

∣∣∣−1
rC

∣∣∣χa〉 between the 1s electron on a hydrogen atom at the
origin, described by a single gaussian function,

χa =

(
2α

π

)3/4

e−αr2

and a second hydrogen nucleus, C, at very large separation.

If the two basis functions are at the origin,

|ra − rb| = 0 ∴ e−
αβ

α+β |ra−rb|2 = 1∣∣∣∣ra − rb
2

− rc

∣∣∣∣ = rC ∴ t = 2α

∣∣∣∣ra − rb
2

− rC

∣∣∣∣2 = 2αrC
2

at large rC , erf(t)∼ 1 (see Figure 6).

F0 [t] =
1

2

(π
t

)
=

1

2

( π
2α

)1/2 1

rC

Aaa = −〈χa

∣∣∣∣ 1rC
∣∣∣∣χa〉 = −

(
2α

π

)3/2

.
(π
α

)
.
1

2
.
( π
2α

)1/2
.
1

rC
= − 1

rC

Note: this is simply the classical attraction between two point charges separated by rc.

5.4 Electron-electron repulsion integrals, gabcd
The expression for an electron-electron repulsion integral, gabcd, which we need later for H2 (and anything
with more than 1 electron) is rather more complex. For one electron distributed over two s orbitals on
centres a and b with exponents α and β, respectively, interacting with another electron distributed over two
1s orbitals on centres c and d with exponents δ and γ, respectively, the repulsion integral is given by:

gabcd =

(
2α

π

)3/4(
2β

π

)3/4(
2δ

π

)3/4(
2γ

π

)3/4
(

2π5/2

(α+ β) (δ + γ) (α+ β + δ + γ)
1/2

)
×

e

(
− αβ

α+β |ra−rb|2− δγ
δ+γ |rc−rd|2

)
× F0

[
(α+ β) (δ + γ) (α+ β + δ + γ) |rp − rq|2

] (21)
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Figure 7: Positions of atoms a, b, c, d in a 2-electron integral.

where p is the midpoint of the gaussian product χaχb and q is the midpoint of the gaussian product χcχd.
See Szabo and Ostlund P416. Equivalent expressions for Slater-type functions are much much more compli-
cated! See Atkins MQM.

Example 5: Calculate the coulomb repulsion, J , between two electrons in a 1s electron on an atom,
described by a single gaussian function,

χa =

(
2α

π

)3/4

e−αr2

|ra − rb| = 0 |rc − rd| = 0 |rp − rq| = 0 F0 [t] = 1

e−
αβ

α+β |ra−rb|2− δγ
δ+γ |rc−rd|2 = 1

gabcd = J =

(
2α

π

)3
(

2π5/2

(2α) (2α) (4α)
1/2

)
=

(
2α

π

)3(
2π5/2

8α5/2

)
= 2

(α
π

)1/2 (22)

Let’s put this into practice:

Evaluate the energy of H2
+ at r = 0.77 Å, using a basis set composed of a single Gaussian function with

α = 0.4166 on each atom.

E± = E1σg/1σu
=
Haa ±Hab

1± Sab
=
Taa +Aaa ± (Tab +Aab)

1± Sab

Plugging r = 0.77 Å and α into equations 16, 18 and 20 gives:

Overlap (S) Saa=Sbb=1 Sab=0.643

Kinetic energy (T ) Taa=Tbb=0.625 au Tab=0.284 au

Nuclear attraction (A) Aaa=Abb=-1.676 au Aab=-1.154 au

11



E+ =E1σg =
Taa +Aaa + (Tab +Aab)

1 + Sab

=
0.625− 1.676 + 0.284− 1.154

1 + 0.643
= −1.169 au

we then add the nuclear-nuclear repulsion, Enuc, to get the total energy of H2
+. We can treat the nuclei

classically, so Enuc comes from simple electrostatics:

Enuc =
1

Rab
= 0.687

Etot = E1σg
+ Enuc = −1.169 + 0.687 = −0.481 au

Figure 8: Potential energy surface for H2
+.

6 Practical choices of basis set.
6.1 Linear combinations of gaussians
Despite their mathematical convenience, it remains true that GTOs provide a much worse approximation
to atomic orbitals than STOs. The compromise is to use a linear combination of several GTOs to represent
each atomic orbital rather than a single STO. For example, a triple-ζ basis set uses three GTOs to describe
each atomic orbital. The basic philosophy is that it is easier to perform a large number of easy integrals
than to perform a much smaller number of harder ones!

What can we create using just linear combinations of three Gaussian functions with different values of
ζ (0.25, 0.5 and 1.0 in Figure 9)?

ψ = c1e
−r2 + c2e

− 1
2 r

2

+ c3e
− 1

4 r
2

If we vary the coefficients in the sum, we can get an orbital of arbitrary size (Figure 10).

And we can introduce radial nodes by using negative coefficients, Figure 11 (the coefficients are arbitrary,
simply designed to illustrate how you can create different radial distribution functions from the same set of
gaussian functions).

12



Figure 9: Three gaussian functions with increasing exponents (and so decreasing widths).

Figure 10: Linear combinations with all cn ≥ 0 gives a continuous spectrum of orbital sizes.

Figure 11: Linear combinations with positive and negative cn introduce radial nodes.

6.2 Basis set libraries
All software packages have an internal database of basis sets, and many more are available in repositories
like the basis set exchange (https://www.basissetexchange.org/). These range from very small to huge.
At the simplest end, we have basis sets like STO-3G which uses 3 GTOs to represent each STO. Thus a
calculation on H2O with an STO-3G basis would involve 21 basis functions (3 for each of O 1s, 2s, 2px,y,z
and H 1s (×2)).
Very large basis sets are commonly used now, including double, triple, quadruple... ζ forms: more than one
exponent is used to describe a given orbital. Varying linear combinations allows the radial extent of the

13



orbital to vary (c.f. Figure 10). e.g. 6-31G

Polarisation functions: basis functions with higher angular momentum (e.g. p-symmetry functions on H,
d-symmetry functions on B, C, N, O, F, f -symmetry functions on transition metals - recall the discussion
of the role of d orbitals in e.g. SF6) e.g 6-31G*

Diffuse functions: very low ζ – important for accurate description of weakly bound electrons (anions, for
example) e.g. 6-31+G

The choice of an appropriate basis set is typically one of the major decisions practising computational
chemists need to make.

7 Chemical bonding: what is a bond?
The chemical bond is often presented as an electrostatic phenomenon: “electrons accumulate in the inter-
nuclear region, where the potential energy is highest”. But this is not true: in H2

+, the potential energy is
most favourable when the electron is at one nucleus or the other (where 1/r is infinite), not when it is in the
middle! Where does this idea come from?

The virial theorem tells us that T = −V
2 . Combine this with the expression for the total energy, E = T+V =

V
2 and it seems that we need only to know the potential energy to know the total energy! However, we could
equally well argue that E = T + V = −T and that the total energy is defined entirely by the kinetic energy!
Simple models of bonding focus almost exclusively on the electrostatics, but we really need to consider the
balance between T and V as the H-H bond forms in H2

+:

Figure 12: Variation in A, T and V across the potential energy surface for H2
+

As the bond begins to form, the potential energy V (green curve) actually goes up, and it is the kinetic
energy (black line) that causes the initial drop in total energy. The electron is no longer confined to a single
atom, so is effectively in a bigger ’box’, so T goes down. The increase in V comes because the electron strays
further from the original nucleus. At shorter distances, the curves for V and T cross, and at equilibrium it is
indeed the former that stabilises the molecule. The wavefunction contracts along the direction perpendicular
to the bond (it effectively ’shrink wraps’ the nuclei. So the bond, even in something as simple as H2

+, is
quite complicated!

8 Formulation of the wavefunction for systems with >1 electron.
8.1 Slater determinants
Also see Valence Lecture 3.
The Pauli principle: The total wavefunction must be antisymmetric under the exchange of identical particles.
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Example 1: He
For He, the 2-electron wavefunction

ψHe = 1s(1)1̄s(2)

is not antisymmetric because
1s(1)1̄s(2)− 6= 1s(2)1̄s(1)

(note 1s(1)1̄s(2) is shorthand for 1s(1)1s(2)α(1)β(2))
But the linear combination

ψHe =
1√
2
(1s(1)1̄s(2)− 1s(2)1̄s(1))

is antisymmetric because

1√
2
(1s(2)1̄s(1)− 1s(1) ¯1s(2)) = − 1√

2
(1s(1)1̄s(2)− 1s(2)1̄s(1)) = −ψHe

Example 2: Li

ψLi = 1s(1)1̄s(2)2s(3)

is not antisymmetric.

ψLi =
1√
2
(1s(1)1̄s(2)2s(3)− 1s(2)1̄s(1)2s(3))

is antisymmetric wrt exchange of electrons 1 and 2, but not wrt 1 and 3 or wrt 2 and 3.

ψLi =
1√
6
(1s(1)1̄s(2)2s(3) + 1s(2)1̄s(3)2s(1) + 1s(3)1̄s(1)2s(2)

− 1s(1)1̄s(3)2s(2)− 1s(2)1̄s(1)2s(3)− 1s(3)1̄s(2)2s(1))

is antisymmetric wrt exchange of all three.

The antisymmetric wavefunctions can be written as Slater determinants:

ψHe =
1√
2
(1s(1)1̄s(2)− 1s(2)1̄s(1)) =

1√
2

∣∣∣∣∣∣1s(1) 1̄s(1)

1s(2) 1̄s(2)

∣∣∣∣∣∣
ψLi =

1√
6
(1s(1)1̄s(2)2s(3) + 1s(2)1̄s(3)2s(1) + 1s(3)1̄s(1)2s(2)

− 1s(1)1̄s(3)2s(2)− 1s(2)1̄s(1)2s(3)− 1s(3)1̄s(2)2s(1))

=
1√
6

∣∣∣∣∣∣∣∣∣
1s(1) 1̄s(1) 2s(1)

1s(2) 1̄s(2) 2s(2)

1s(3) 1̄s(3) 2s(3)

∣∣∣∣∣∣∣∣∣
Note that using a single Slater determinant to represent the wavefunction is a convenient way to ensure that
it conforms to the Pauli Principle, but it is by no means the only way. Any linear combination of Slater
determinants will do the job, as we will see when we consider Configuration Interaction.
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9 H2 explicit formulation of the Hamiltonian for a 2-electron sys-
tem

Ĥel = −
∑
i

(
1

2
∇2

i + Vi

)
=

(
−1

2
∇2

1 −
1

ra1
− 1

rb1

)
+

(
−1

2
∇2

2 −
1

ra2
− 1

rb2

)
+

1

r12
= Ĥ1 + Ĥ2 +

1

r12
(23)

Ĥ1 and Ĥ2 are identical to the 1-electron Hamiltonians for H2
+ (Equation 9). If we chose to ignore the

1
r12

term in the Hamiltonian (i.e. we assumed that electrons don’t interact!), this is simply the sum of two
independent one-electron H2

+ Hamiltonians, and the problem is separable.
The resulting energy and ground-state wavefunction would be E = 2E1σg and ψ = 1σg(1)1σg(2), a simple
“Hartree product”.

We have already established, however, that a wavefunction of this type is not antisymmetric wrt exchange
of electrons (unsurprisingly as we chose to ignore the interaction between the electrons in deriving it!): we
need to use a Slater determinant.

ψH2
=

1√
2
(1σg(1) ¯1σg(2)− 1σg(2) ¯1σg(1)) =

1√
2

∣∣∣∣∣∣1σg(1)
¯1σg(1)

1σg(2) ¯1σg(2)

∣∣∣∣∣∣
Now we have a correct expression for ψ and an expression for Ĥ, we can compute the expectation value:
〈ψ|Ĥ|ψ〉

Step 1: Expand ψ

E = 〈ψ|Ĥ|ψ〉 = 1

2
〈(1σg(1) ¯1σg(2)− 1σg(2) ¯1σg(1))|Ĥ1 + Ĥ2 +

1

r12
|(1σg(1) ¯1σg(2)− 1σg(2) ¯1σg(1))〉

=
1

2
〈1σg(1) ¯1σg(2)|Ĥ1 + Ĥ2 +

1

r12
|1σg(1) ¯1σg(2)〉+

1

2
〈1σg(2) ¯1σg(1)|Ĥ1 + Ĥ2 +

1

r12
|1σg(2) ¯1σg(1)〉

− 1

2
〈1σg(1) ¯1σg(2)|Ĥ1 + Ĥ2 +

1

r12
|1σg(2) ¯1σg(1)〉 −

1

2
〈1σg(2) ¯1σg(1)|Ĥ1 + Ĥ2 +

1

r12
|1σg(1) ¯1σg(2)〉
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Step 2: Expand terms of Ĥ to give 12 integrals, labelled I1-I12.

E =
1

2
〈1σg(1) ¯1σg(2)|Ĥ1|1σg(1) ¯1σg(2)〉 I1

+
1

2
〈1σg(1) ¯1σg(2)|Ĥ2|1σg(1) ¯1σg(2)〉 I2

−1

2
〈1σg(1) ¯1σg(2)|Ĥ1|1σg(2) ¯1σg(1)〉 I3

−1

2
〈1σg(1) ¯1σg(2)|Ĥ2|1σg(2) ¯1σg(1)〉 I4

−1

2
〈1σg(2) ¯1σg(1)|Ĥ1|1σg(1) ¯1σg(2)〉 I5

−1

2
〈1σg(2) ¯1σg(1)|Ĥ2|1σg(1) ¯1σg(2)〉 I6

+
1

2
〈1σg(2) ¯1σg(1)|Ĥ1|1σg(2) ¯1σg(1)〉 I7

+
1

2
〈1σg(2) ¯1σg(1)|Ĥ2|1σg(2) ¯1σg(1)〉 I8

+
1

2
〈1σg(1) ¯1σg(2)|

1

r12
|1σg(1) ¯1σg(2)〉 I9

−1

2
〈1σg(2) ¯1σg(1)|

1

r12
|1σg(1) ¯1σg(2)〉 I10

−1

2
〈1σg(1) ¯1σg(2)|

1

r12
|1σg(2) ¯1σg(1)〉 I11

+
1

2
〈1σg(2) ¯1σg(1)|

1

r12
|1σg(2) ¯1σg(1)〉 I12

(24)

I1-I8 are termed ’1-electron integrals’ as they depend only on the coordinates of a single electron, whereas
I9 − I12 are referred to as ’2-electron integrals’. We will now look at each of I1 − I12 in turn and establish
whether they are zero or not.

9.1 1-electron integrals, I1-I8

I1 =
1

2
〈1σg(1) ¯1σg(2)|Ĥ1|1σg(1) ¯1σg(2)〉

Note that Ĥ1 only acts on electron 1. We can therefore separate out everything to do with electron 1 from
electron 2, and also separate out the spatial and spin components of the wavefunctions:

I1 =
1

2
〈1σg(1)|Ĥ1|1σg(1)〉 〈 ¯1σg(2)| ¯1σg(2)〉

=
1

2
〈1σg(1)|Ĥ1|1σg(1)〉 〈1σg(2)|1σg(2)〉 〈α(1)|α(1)〉 〈β(2)|β(2)〉

=
1

2
E1σg × 1× 1× 1 =

1

2
E1σg

Similarly

I2 =
1

2
〈 ¯1σg(2)|Ĥ2| ¯1σg(2)〉 〈1σg(1)|1σg(1)〉 =

1

2
E1σg

I7 =
1

2
〈 ¯1σg(1)|Ĥ1| ¯1σg(1)〉 〈1σg(2)|1σg(2)〉 =

1

2
E1σg

I8 =
1

2
〈1σg(2)|Ĥ2|1σg(2)〉 〈 ¯1σg(1)| ¯1σg(1)〉 =

1

2
E1σg

now consider I3:
I3 =

1

2
1 〈1σg(1) ¯1σg(2)|Ĥ1|1σg(2) ¯1σg(1)〉
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Separating the spatial and spin components of the wavefunctions gives:

I3 =
1

2
〈1σg(1)|Ĥ1| ¯1σg(1)〉 〈 ¯1σg(2)|1σg〉 (2)

=
1

2
〈1σg(1)|Ĥ1|1σg(1)〉 〈1σg(2)|1σg(2)〉 〈α(1)|β(1)〉 〈β(2)|α(2)〉

=
1

2
E1σg

× 1× 0× 0 = 0

The integral is zero due to spin orthogonality, and likewise for I4, I5 and I6.
If we now add up the sum of the 1-electron integrals, I1-I8, we get Etot = 4× 1

2E1σg + 4× 0 = 2E1σg , as we
might have guessed!

9.2 2-electron integrals, I9-I12
We now can’t separate out the components in electron 1 and electron 2 because the operator acts on both,
but we can still separate out the spatial and spin parts (because 1

r12
does not act on spin).

I9 =
1

2
〈1σg(1) ¯1σg(2)|

1

r12
|1σg(1) ¯1σg(2)〉

=
1

2
〈1σg(1)1σg(2)|

1

r12
|1σg(1)1σg(2)〉 〈α(1)|α(1)〉 〈β(2)|β(2)〉

=
1

2
J1σg1σg

× 1× 1 =
1

2
J1σg1σg

(25)

This is the ‘Coulomb integral’ (note the multiple uses of the term ‘Coulomb integral’ in the literature).
Physically: J is the repulsion between two electrons occupying the same orbital, 1σg.
similarly:

I12 =
1

2
〈1σg(2) ¯1σg(1)|

1

r12
|1σg(2) ¯1σg(1)〉 =

1

2
J1σg1σg

but:

I10 = −1

2
〈1σg(2) ¯1σg(1)|

1

r12
|1σg(1) ¯1σg(2)〉

= −1

2
〈1σg(2)1σg(1)|

1

r12
|1σg(1)1σg(2)〉 〈β(1)|α(1)〉 〈α(2)|β(2)〉 = 0

due to spin orthogonality, and likewise for I11. So, finally, we have an expresssion for the total energy of H2:

Etot = 4× 1

2
E1σg

+ 2× 1

2
J1σg1σg

= 2E1σg
+ J1σg1σg

(26)

i.e. what you might expect classically: twice the energy of an electron in H2
+, plus an additional term

J1σg1σg , capturing the destabilising effect of electron-electron repulsion.

9.3 A note on physicists’ and chemists’ notation
A commonly used shorthand notation for the 2-electron integral

〈1σg(1)1σg(2)|
1

r12
|1σg(1)1σg(2)〉

is
〈1σg(1)1σg(2)|1σg(1)1σg(2)〉
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or more generally
〈ij|ij〉

where the 1
r12

term is implicit. This is called the physicists notation. Even without the 1
r12

present, the
2-electron integrals can still be distinguished from overlap integrals, 〈i|j〉 because the former have 2 indices
on each side rather than one. Up to 4 spin orbitals can be involved, in which case the integral is denoted
〈ij|kl〉. It is often conceptually easier (at least in the eyes of chemists, apparently!) to collect all terms
relating to a given electron on the same side of the 1

r12
term. Writing the integrals out in full, including

complex conjugation, we have:

J1σg1σg
= 〈1σg(1)1σg(2)|

1

r12
|1σg(1)1σg(2)〉 =

∫
1σ∗

g(1)1σ
∗
g(2)|

1

r12
|σg(1)1σg(2)dτ

we can rearrange this so that all terms in electron 1 are on the left and all terms in electron 2 are on the
right:

〈ij|ij〉 = J1σg1σg
=

∫
1σ∗

g(1)1σg(1)|
1

r12
|σg(2)1σ∗

g(2)dτ = [ii|jj]

This arrangements of terms makes it more obvious that the interaction is between a probability density
defined by electron 1 (σ∗

g(1)1σg(1)) and a probability density defined by electron 2 (σg(2)1σ∗
g(2)). Note the

use of a square bracket rather than a traditional ‘bra’/’ket’ - this is called ’chemists’ notation’. We can’t use
the Dirac notation because the complex conjugates have moved, and so the left and right hand sides are no
longer bras and kets. Both systems of nomenclature are used in the literature, and if you are writing a code,
it is vital to keep track of which one you are using.

9.4 Evaluation of molecular integrals
So far, we have developed the required integrals (S, T , A, J) in terms of the molecular orbitals, 1σg in this
case. In order to get a numerical result (as we did for atomic H previously), we need to expand the orbitals
using the LCAO ansatz.

1σg =
1√

2 (1 + Sab)
(χa + χb)

Expanding J1σg1σg = 〈1σg(1)1σg(2)| 1
r12

|1σg(1)1σg(2)〉 in this basis gives:

J1σg1σg =
1

4(1 + Sab)2
〈(χa + χb) (1) (χa + χb) (2)|

1

r12
| (χa + χb) (1) (χa + χb) (2)〉

=
1

4(1 + Sab)2
[

〈χa(1)χa(2)|
1

r12
|χa(1)χa(2)〉+ 〈χa(1)χa(2)|

1

r12
|χa(1)χb(2)〉

+ 〈χa(1)χa(2)|
1

r12
|χb(1)χa(2)〉+ 〈χa(1)χa(2)|

1

r12
|χb(1)χb(2)〉

+ 〈χa(1)χb(2)|
1

r12
|χa(1)χa(2)〉+ 〈χa(1)χb(2)|

1

r12
|χa(1)χb(2)〉

+ 〈χa(1)χb(2)|
1

r12
|χb(1)χa(2)〉+ 〈χa(1)χb(2)|

1

r12
|χb(1)χb(2)〉

+ 〈χb(1)χa(2)|
1

r12
|χa(1)χa(2)〉+ 〈χb(1)χa(2)|

1

r12
|χa(1)χb(2)〉

+ 〈χb(1)χa(2)|
1

r12
|χb(1)χa(2)〉+ 〈χb(1)χa(2)|

1

r12
|χb(1)χb(2)〉

+ 〈χb(1)χb(2)|
1

r12
|χa(1)χa(2)〉+ 〈χb(1)χb(2)|

1

r12
|χa(1)χb(2)〉

+ 〈χb(1)χb(2)|
1

r12
|χb(1)χa(2)〉+ 〈χb(1)χb(2)|

1

r12
|χb(1)χb(2)〉

]

(27)
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The 16 integrals above, separate into four distinct types:

〈χa(1)χa(2)|
1

r12
|χa(1)χa(2)〉 = 〈aa|aa〉 = 〈bb|bb〉

〈χa(1)χa(2)|
1

r12
|χb(1)χb(2)〉 = 〈aa|bb〉 = 〈bb|aa〉

〈χa(1)χb(2)|
1

r12
|χa(1)χb(2)〉 = 〈ab|ab〉 = 〈ba|ba〉 = 〈ab|ba〉 = 〈ba|ab〉

〈χa(1)χa(2)|
1

r12
|χa(1)χb(2)〉 = 〈aa|ab〉 = 〈aa|ba〉 = 〈ab|aa〉 = 〈ba|aa〉 = 〈ab|bb〉 = 〈ba|bb〉 = 〈bb|ab〉 = 〈bb|ba〉

J1σg1σg =
1

4(1 + Sab)2
[2 〈aa|aa〉+ 4 〈ab|ab〉+ 2 〈aa|bb〉+ 8 〈aa|ab〉]

The analytical formula required to calculate these integrals was given in Equation 21. Note that the corre-
sponding equations with Slater basis sets are much more complicated!).

For our standard toy model of H2 at 0.77 Å with the single Gaussian basis function (α = 0.4166) on each
atom, values are:

〈aa|aa〉 = 0.728 au 〈aa|bb〉 = 0.561 au

〈ab|ab〉 = 0.301 au 〈aa|ab〉 = 0.436 au

Sab = 0.643

J =
1

4× 1.6432
[2× 0.728 + 2× 0.561 + 4× 0.301 + 8× 0.436] = 0.673 au

E = 2E1σg + J1σg1σg + Enuc = 2×−1.169 + 0.673 + 0.687 = −0.977 au

(28)

Figure 13: Potential energy surface for H2
+.

We can expand a molecular orbital using as many functions on as many atoms as we like:

ψ = N (caχa + cbχb + ccχc + cdχd)

If we do so, the number of integrals required increases rapidly (the number of 2-electron integrals scales as
N4 where N is the number of basis functions). Moreover, the 1- and 2-electron integrals (H, J and K) can
involve atomic functions on up to four different atoms, a, b, c and d: e.g.

〈χa(1)χb(2)|
1

r12
χc(1)χd(2)〉 = 〈ab|cd〉

The 4-centre-2-electron integrals are numerous and very time-consuming to evaluate.

20



9.5 Excited states of H2 and the exchange integral, K.
Let us perform the same analysis with the first triplet excited state of H2,

ψ =
1√
2
(1σg(1)1σu(2)− 1σg(2)1σu(1))) =

1√
2

∣∣∣∣∣∣1σg(1) 1σu(1)

1σg(2) 1σu(2)

∣∣∣∣∣∣
Expand in terms of ψ and Ĥ again gives 12 integrals, again labelled I1-I12.

E =
1

2
〈1σg(1)1σu(2)|Ĥ1|1σg(1)1σu(2)〉 I1

+
1

2
〈1σg(1)1σu(2)|Ĥ2|1σg(1)1σu(2)〉 I2

−1

2
〈1σg(1)1σu(2)|Ĥ1|1σg(2)1σu(1)〉 I3

−1

2
〈1σg(1)1σu(2)|Ĥ2|1σg(2)1σu(1)〉 I4

−1

2
〈1σg(2)1σu(1)|Ĥ1|1σg(1)1σu(2)〉 I5

−1

2
〈1σg(2)1σu(1)|Ĥ2|1σg(1)1σu(2)〉 I6

+
1

2
〈1σg(2)1σu(1)|Ĥ1|1σg(2)1σu(1)〉 I7

+
1

2
〈1σg(2)1σu(1)|Ĥ2|1σg(2)1σu(1)〉 I8

+
1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(1)1σu(2)〉 I9

−1

2
〈1σg(2)1σu(1)|

1

r12
|1σg(1)1σu(2)〉 I10

−1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(2)1σu(1)〉 I11

+
1

2
〈1σg(2)1σu(1)|

1

r12
|1σg(2)1σu(1)〉 I12

(29)

1-electron terms, I1-I8

I1 =
1

2
〈1σg(1)|Ĥ1|1σg(1)〉 〈1σu(2)|1σu(2)〉

=
1

2
〈1σg(1)|Ĥ1|1σg(1)〉 〈1σu(2)|1σu(2)〉 〈α(1)|α(1)〉 〈α(2)|α(2)〉

=
1

2
E1σg

× 1× 1× 1 =
1

2
E1σg

I1 = I8 = E1σg

I2 = I7 = E1σu

I3 = I4 = I5 = I6 = −1

2
〈1σg(1)|Ĥ1|1σu(1)〉 〈1σu(2)|1σg(2)〉 = 0

note that I3 = I4 = I5 = I6 = 0 because now the spatial components, 1σu and 1σu, are orthogonal. Contrast
with the expansion of the ground state where I3, I4, I5 and I6 = 0 were zero because of orthogonality of the
spin components.
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2-electron terms:

I9 = I12 =
1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(1)1σu(2)〉

=
1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(1)1σu(2)〉 〈α(1)|α(1)〉 〈α(2)|α(2)〉

=
1

2
J1σg1σu

× 1× 1 =
1

2
J1σg1σu

J1σg1σu
is the repulsion between an electron in 1σg and an electron in 1σu.

Thus far, the expression is exactly as it was for the ground state, BUT

I10 = I11 =
1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(2)1σu(1)〉

=
1

2
〈1σg(1)1σu(2)|

1

r12
|1σg(2)1σu(1)〉 〈α(1)|α(1)〉 〈α(2)|α(2)〉

=
1

2
K1σg1σu × 1× 1 =

1

2
K1σg1σu

recall that in the singlet case, I10 and I11 were exactly zero because of spin orthogonality - the two spin
components were 〈α(1)|β(1)〉 and 〈β(2)|α(2)〉. There is no such orthogonality here (both spins are the
same!), so the integrals are not necessarily zero: they are known as exchange integrals, K – a purely
quantum phenomenon. Note also that the integrals come into the expression with the opposite sign to I9
and I12.
Collecting terms:

Etot = E1σg
+ E1σu

+ J1σg1σu
−K1σg1σu

(30)

J and K are both positive (I will explain why later), so K can be thought of as offsetting some of the
electron-electron repulsion captured in J : this is what lies behind the general observation ’electrons with
parallel spin repel each less than electrons with opposite spins’.

Note the special case when the two orbitals are the same:

J = 〈ij|ij〉 K = 〈ij|ji〉 (31)

∴ when i = j, J = K. This proves to be very important later when we come to manipulate expressions
involving energies.

Finally, note Ĥ does not operate on spin degrees of freedom. Thus the influence of spin on the energy
is exerted indirectly via the constraints on the spatial component of ψ imposed by the Pauli principle. The
total wavefunction (spatial×spin) must be antisymmetric therefore the spin part places constraints on the
spatial part, and it is the spatial part that determines the energy. If we write out the spatial part of 3ψ
to make the dependence on the positions of electrons 1 and 2 (r+1 and r2, explicitly clear, we see that the
wavefunction must go to zero in the limit that the electrons are in the same place (the ’Fermi hole’).

3ψ =
1√
2
(1σg(r1)1σu(r2)− 1σg(r2)1σu(r1)) = 0 when r1 = r2.
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Figure 14: Fermi hole at r1 = r2 for the triplet wavefunction.

10 Hartree-Fock theory
What have we achieved so far?
We have set up the machinery that allows us to evaluate the expression 〈ψ|Ĥ|ψ〉 = E if we know the
wavefunction in the form of an antisymmetrised product and we know the exact mathematical form that the
individual orbitals, 1σg in this case, take.

ψ =
∣∣∣1σg ¯1σg

∣∣∣ = 1√
2

∣∣∣∣∣∣1σg(1)
¯1σg(1)

1σg(2) ¯1σg(2)

∣∣∣∣∣∣ (32)

In the case of minimal basis set H2, symmetry was all we needed (1σg is uniquely defined as the appropri-
ately normalised in-phase combination of the 1s orbitals) but what if we didn’t know, a priori, what the
orbitals look like. In [HHe]+, for example, we know that the occupied orbital is an in-phase combination
of 1s orbitals and, qualitatively, we anticipate that the bonding orbital will be polarised towards the more
electronegative He atom. But how polarised? 90:10? 60:40? How do we work this out? The next section
deals with Hartree-Fock theory, which provides a route, via the variation theorem, to find the optimum linear
combination of atomic orbitals in cases where the coefficients are not determined by symmetry alone (i.e.
the vast majority of problems!)

By analogy to the ground state of H2, we have an expression for the total energy of [HHe]+:

E = 2Eσ + Jσσ

where Eσ represents the energy of an isolated electron in the σ orbital (note there is no g/u because the
molecule has C∞v symmetry). We would like to minimise this energy with respect to the coefficients in the
LCAO expansion of the σ orbital:

ψ = N (caχH + cbχHe)

We can express the ground-state wavefunction of [HHe]+ as a Slater determinant:

ψ =
∣∣∣1σ 1̄σ

∣∣∣ = 1√
2

∣∣∣∣∣∣1σ(1) 1̄σ(1)

1σ(2) 1̄σ(2)

∣∣∣∣∣∣
If we define the coulomb and exchange operators, Ĵi and K̂i (Equation 34) we see that in order to know the
effect of J2 on electron 1, we need to know the wavefunction for electron 2 because it is contained in the
operator. Likewise, if we wish to compute the effect of J1 on electron 2, we need to know the wavefunction
for electron 1. We escape from the ’chicken and egg’ situation by starting with a guess, and then iterating
until the answer no longer changes - the so-called ‘self-consistent field’.

Ĵjψi(2) =

(∫
ψ∗
j (1)ψj(1)

1

r12

)
ψi(2) (33)

K̂jψi(2) =

(∫
ψ∗
i (1)ψj(1)

1

r12

)
ψj(2) (34)
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The coulomb operator defines the influence of the charge cloud of electron 2, ψj(2)ψj(2), on electron 1. The
exchange operator defines the modification of this repulsion by spin correlation.

The formal derivation of the HF equations involves finding the condition under which E, the total energy,
is a minimum, subject to the constraint that the orbitals remain orthonormal, 〈ψi|ψj〉 = δij . The process
involves the use of Lagrange multipliers – see box and MQM Ch 7 further info for a full derivation.

A reminder about Lagrange multipliers: how to find an extremum subject to a
constraint.
Find the turning point of f = 3x2 − 2y2 subject to the constraint that x+ y = 2
define g = x+ y − 2 = 0 and so f = f − λ g = 3x2 − 2y2 − λ(x+ y − 2)
λ is the ‘Lagrange multiplier’.

df

dx
= 6x− λ = 0

df

dy
= −4y − λ = 0

x = −4 y = 6 λ = −24

This procedure leads to the Hartree-Fock equations,

F̂ψi = εiψi (35)

where the Fock operator, F̂ , is defined as

F̂ = Ĥ +
∑
j

(
2Ĵj − K̂j

)
= Ĥ + Ĝ

εi is the Hartree Fock orbital energy (and also the Lagrange multiplier).
Ĥ collects together the one-electron terms for kinetic energy (T̂ ) and nuclear-electron attraction (Â)

Ĥ = −1

2
∇2

1 −
1

rH1
− 1

rHe1

The eigenvalues of the Hartree-Fock equations are:

εi = Ei +
∑
j

(2Jij −Kij) (36)

Note the difference between Ei and εi: Ei is the interaction between the electron and the nuclei in the
absence of the other electron (i.e. exactly as in H2

+). εi is the Hartree Fock orbital energy, which represents
the energy of the electron in the combined field of the nuclei and the other electron. We now have a system
of linear equations where the Fock operator (a one-electron operator) defines the average field due to the
nuclei (contained in Ĥ) and the remaining electrons (contained in Ĵ and K̂ operators).

What do the one-electron energies, εi, mean?
Each orbital energy contains the effects of repulsions by all other electrons, so if we sum over all occupied
orbital energies,

∑
i εi, the repulsions are counted twice. Therefore, to calculate the total energy we have to

correct for this by subtracting the electron-electron repulsion.

E =
∑
i

2εi −
∑
i,j

(2Jij −Kij)

where the sum is over doubly-occupied orbitals.
Check this works for H2:

E = 2ε1σg
− 2J1σg1σg

+K1σg1σg
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but recall that J1σg1σg = K1σg1σg (Equation 31) and also that ε1σg = E1σg + J1σg1σg

∴ E = 2
(
E1σg

+ J1σg1σg

)
− 2J1σg1σg

+−J1σg1σg

= 2E1σg
+ J1σg1σg

precisely as we found in Equation 26.

10.1 Koopmans’ approximation:
“The ionisation energy is approximately equal to the negative of the Hartree Fock orbital energy”:

Ii ≈ −εi (37)

Why?

I (H2) = EH2
+ − EH2

= E1σg
−
(
2E1σg

+ J1σg1σg

)
= −E1σg

− J1σg1σg
= −ε1σg

The final equality comes from Equation 36. A more physical way to see this is to note that when we remove
an electron from H2 we lose the attraction to the nuclei (E1σg ) but we also relieve one unit of Coulomb
repulsion, J1σg1σg , – precisely the components of ε1σg

10.2 Hartree-Fock-Roothaan (HFR) Equations:
These are the HF equations expressed in terms of the LCAO approximation.

F̂ φ = εφ φ =
∑
n

cnχn

F̂
∑
n

cnχn = ε
∑
n

cnχn

Pre-multiplying by 〈χm| and integrating gives∑
n

cn 〈χm|F̂ |χn〉 = ε
∑
n

cn 〈χm|χn〉∑
n

cn (Fmn − ε Smn) = 0

which has non-trivial solutions when |Fmn − ε Smn| = 0 (note similarities to secular equations, Equation 3
– more on solving these in the last 2 lectures).
Reiterate: in order to determine cn by solving the HFR equations, we need to be able to calculate the matrix
elements Fmn (including coulomb and exchange integrals), which in turn means that we need to already
know cn! Hence we need to start with a guess and iterate:

The flow diagram for a Hartree-Fock calculation is given in Figure 15.

10.3 The anatomy of a Hartree-Fock calculation:
Calculate the ground-state energy of [HHe]+ at the equilibrium separation, R = 0.80 Å with a minimal
STO-1G basis set (α = 0.4166 on H, α = 0.7739 on He). The ’best’ exponents are obtained by fitting to
experiment, and a huge range is available at https://www.basissetexchange.org/. In this case, the larger
value of ζ for He reflects the fact that the Zeff should be higher and the 1s orbital should be smaller.

Expand the MOs in the form
ψ = caχH ±cbχHe
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Figure 15: Flow diagram for a Hartree-Fock calculation.

where χH and χHe are 1s orbitals centred on He and He, respectively.

The general expression for the HFR equations∑
n

cn (Fmn − ε Smn) = 0

give us:

(Faa − ε Saa) ca + (Fab − ε Sab) cb = 0

(Fab − ε Sab) ca + (Fbb − ε Sbb) cb = 0

∣∣∣∣∣∣Faa − ε Saa Fab − ε Sab

Fab − ε Sab Fbb − ε Sbb

∣∣∣∣∣∣ = 0

We need to build this matrix using matrix elements of the Fock operator:

F̂ = Ĥ +
∑
j

(
2Ĵj − K̂j

)
= Ĥ + Ĝ

so we need numerical values for all the matrix elements (energies in Hartree units), which we can calculate
using the tools set out in Section 5.

Overlap (S): Saa=Sbb = 1 Sab = 0.502

Kinetic energy (T ) Taa = 0.625 Tbb = 1.161 Tab = 0.239

Nuclear attraction (A) Aaa = −2.285 Abb = −3.464 Aab = −1.555

Ĥ + T̂ =

−1.661 −1.316

−1.316 −2.303

 Ŝ =

 1.0 0.502

0.502 1.0


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We also need the matrix elements of electron-electron repulsion (note there are now 6 different ones because
the molecule is no longer symmetric, so 〈aa|aa〉 6= 〈bb|bb〉 and 〈aa|ab〉 6= 〈bb|ab〉), as was the case in Equation
27:

Table 1: Electron-electron repulsion integrals for HHe+. These are obtained from Equation 21.
〈aa|aa〉 = 0.728 〈bb|bb〉 = 0.993 〈ab|ba〉 = 0.585

〈aa|ab〉 = 0.342 〈aa|bb〉 = 0.219 〈bb|ab〉 = 0.436

Let us start the iteration with a guess for ca and cb.

Step 1: guess cb = 2ca ∴ cb
ca

= 2 (a plausible guess because we anticipated that cb > ca for the σ
bonding orbital in HHe+)

Step 2: normalise ψ1σ = caχH + cbχHe = caχH + 2caχHe

∫
(caχH + 2caχHe) (caχH + 2caχHe) dτ = 1

Step 3: Now calculate the elements of the electron-electron repulsion matrix. Here, we need to introduce
the coefficients, ca and cb, in the bonding orbital – these determine where the electrons are, and hence what
the form of Ĵj is.
Take the first element as an example - this expression is analogous to the one set out in Equation 9.4 for H2.

Gaa = 〈a|Ĝ|a〉 = 2c2a

(
〈aa|aa〉 − 1

2
〈aa|aa〉

)
+ 2cacb

(
〈aa|ab〉 − 1

2
〈aa|ab〉

)
+

2cbca

(
〈aa|ab〉 − 1

2
〈aa|ab〉

)
+ 2c2b

(
〈ab|ba〉 − 1

2
〈aa|bb〉

)
= 2× 0.143× 1

2
× 0.728 + 2× 0.286× 1

2
× 0.342

+ 2× 0.286× 1

2
× 0.342 + 2× 0.572×

(
0.585− 1

2
× 0.219

)
= 0.842

The complete G matrix is

Ĝ =

0.842 0.319

0.319 0.952


F̂ = Ĥ + Ĝ =

−1.661 −1.316

−1.316 −2.303

+

0.842 0.319

0.319 0.952

 =

−0.819 −0.997

−0.997 −1.351



Step 4: solve FC = SCE ∣∣∣∣∣∣ −0.819− ε −0.997− 0.502ε

−0.997− 0.502ε −1.351− ε

∣∣∣∣∣∣ = 0 (38)

ε1 = −1.460 au (lowest eigenvalue)
Step 5: Converged? i.e. is the value of ε1 the same (to within a defined threshold) as the previous value.
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Clearly as this is the first iteration we have nothing to compare to, and so the answer is no!
Otherwise
Step 6: solve the secular equations for ca, cb using ε = ε1 = −1.460 au

(Faa − ε Saa) ca + (Fab − ε Sab) cb = 0

(Fab − ε Sab) ca + (Fbb − ε Sbb) cb = 0

0.641ca − 0.264cb = 0 ∴
cb
ca

= 2.43

and go round the cycle again..

Step 2: normalise ψ1σ = caχH + cbχHe with cb
ca

= 2.43

ca = 0.327 ∴ cb = 0.795

etc. etc.

ca cb Faa Fab Fbb ε1

Initial 0.378 0.756 -0.819 -0.997 -1.351 -1.460

1st 0.327 0.795 -0.804 -0.984 -1.347 -1.449

2nd 0.319 0.801 -0.802 -0.982 -1.346 -1.448

3rd 0.318 0.802 -0.801 -0.982 -1.346 -1.447

4th 0.318 0.802 -0.801 -0.982 -1.346 -1.447

5th 0.318 0.802 -0.801 -0.982 -1.346 -1.447

Table 2: Convergence History

at self consistency: ψ1σ = 0.318χH + 0.802χHe. So the bonding orbital really is localised on He!

Figure 16: HOMO of HHe+.
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11 Electron-electron repulsions in a chemical context:
We can generalise the expression for the energy to atoms/molecules with more than 2 electrons:

E =
∑
i

2Ei +
∑
i,j

(2Jij −Kij) (39)

for any closed-shell molecule, where the summation runs over doubly occupied orbitals For a 4-electron sys-
tem (Figure 17), for example:

E = 2Ea + 2Eb + (2Jaa −Kaa) + (2Jbb −Kbb) + 2 (2Jab −Kab)

= 2Ea + 2Eb + Jaa + Jbb + 4Jab − 2Kab

A simple ‘algorithm’ that works for any atom/molecule (open or closed shell):

Total energy =

• the sum of the one-electron energies

• + 1J per pairwise interaction between two electrons

• - 1K per pairwise interaction between two electrons with parallel spins.

Figure 17: Coulomb and exchange contributions to the total electron-electron repulsion in a 4-electron
system.

Let’s look at 2 limiting cases, both with 4 electrons: He2 and Be

He2:
In this case, the two pairs of electrons (in σg and σu) occupy similar regions of space, Figure 18 (both are
linear combinations of He 1s).

K is very large – it reduces the Coulomb repulsion by a factor of 2/3!
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Figure 18: Components of the total energy for a He2 dimer.

Be:
Effectively the same problem (4 electrons in 2 orbitals), but now the two pairs of electrons (in 1s and 2s)
occupy very different regions of space, Figure 19.

K is very small – it only offsets ∼ 5% of the Coulomb repulsion.
Useful rule of thumb for d electrons transition metals: K ≈ 0.25×J (electrons are in similar regions of space).
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Figure 19: Components of the total energy for a Be atom.

11.1 What are the signs and magnitudes of J and K?
Recall the shapes of the orbitals in He2:

Now consider the products of orbitals on the left and right hand sides of the expression for J .

J1σg1σu = 〈1σg(1)1σu(2)|
1

r12
|1σg(1)1σu(2)〉
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1σg(1)1σg(1) 1σu(2)1σu(2)

> 0 everywhere > 0 everywhere
1

r12
> 0 everywhere

J is the sum of terms that are all positive, so J MUST be positive (no surprise - it is a repulsion, after all!).

What about K?

K1σg1σu
= 〈1σg(1)1σu(2)|

1

r12
|1σg(2)1σu(1)〉

1σg(1)1σu(1) 1σg(2)1σu(2)

> 0 on left,< 0 on right > 0 on left,< 0 on right

1

r12
> 0 everywhere

The products can now be either positive or negative, depending on position in space.

If both electrons on same side of the node: 1σg(1)1σu)2)| 1
r12

|1σg(2)1σu(1) > 0

If electrons on opposite sides of the node: 1σg(1)1σu(2)| 1
r12

|1σg(2)1σu(1) < 0

Unlike J , K is the sum of some terms that are positive and some terms that are negative, so we can-
not, a priori, predict its sign in the same way as we can for J .

However, if the electrons are on the same side of the node, r12 is necessarily small, so 1σg(1)1σu(2)| 1
r12

|1σg(2)1σu(1)
is large (and positive as established above).

In contrast, if the electrons are on opposite sides of the node, r12 is necessarily large(r), so 1σg(1)1σu(2)| 1
r12

|1σg(2)1σu(1)
is small (and negative as established above).

The summation large positive and small negative contributions means that K is positive, but generally
smaller than J

In practice K ≈ 0.25J for electrons in the same subshell where there are no radial nodes, such as first-
row atoms (C, N, O, F), first-row TMs and lanthanides.
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12 The correlation problem and post-HF methods.
The Hartree-Fock wavefunction for the ground state of H2 can be represented as:

ψ =
∣∣∣1σg ¯1σg

∣∣∣ = 1√
2

∣∣∣∣∣∣1σg(1)
¯1σg(1)

1σg(2) ¯1σg(2)

∣∣∣∣∣∣

Figure 20: HF and CI potential energy curves for the H2 dimer.

The potential energy surface obtained with this wavefunction shown in Figure 20 (blac curve) indicates that
this reproduces the equilibrium geometry reasonably well, but fails to reproduce the dissociation energy: the
HF energy of H2 at the dissociation limit is ≈ 0.34 au higher than that of two isolated H atoms - this is a
spectacular failure! To see the origin of the problem with the HF wavefunction, expand one of the Hartree
products in the ground-state:

1σg(1)1σg(2) =
1

2 (1 + S)
(χa(1) + χb(1)) (χa(2) + χb(2))

=
1

2 (1 + S)
[χa(1)χa(2) + χb(1)χb(2) + χa(1)χb(2) + χb(1)χa(2)]

= H−
a ...H

+
b + H+

a ...H
−
b + Ha...Hb. + Ha...Hb

i.e. it is an equal mixture of covalent (Ha...Hb) and ionic (H+
a ...H−

b ) resonance structures. This is reasonable
at the equilibrium geometry, where overlap is large, but unrealistic at the dissociation limit, where two
neutral H atoms will be strongly favoured over H+ +H−. This problem is a consequence of the central field
approximation, where one electron is influenced only by the average position of the other: the result is that
situations where both electrons are very close to each other at any given instant have a higher weight in the
wavefunction than they should have: we say that the motion of the two electrons is not correlated. Another
way to see this is to note that if the two electrons share the same spatial wavefunction, then wherever the
most probable position to find electron 1 is, it must also be the most probable position to find electron 2,
and that doesn’t make much sense!

12.1 Configuration interaction
The problems at the dissociation limit can be reduced by using configuration interaction – adding in extra
configurations to the wavefunction. In this case we will mix the |1σ2

g | configuration with the doubly excited
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configuration |1σ2
u|

ΨCI = c1|1σ2
g |+ c2|1σ2

u| (40)

Expanding one of the Hartree products for the |1σ2
u| configuration as we did above for |1σ2

g |:

1σu1σu =
1

2 (1− S)
(χa(1)− χb(1)) (χa(2)− χb(2))

=
1

2 (1− S)
[χa(1)χa(2) + χb(1)χb(2)− χa(1)χb(2)− χb(1)χa(2)]

= H−
a ...H

+
b + H+

a ...H
−
b − Ha...Hb. − Ha...Hb

note that the ionic and covalent terms now appear with opposite signs.

for ΨCI = c1|1σ2
g |+ c2|1σ2

u|

(
c1

2 (1 + S)
+

c2
2 (1− S)

)
(χa(1)χa(2) + χb(1)χb(2))

+

(
c1

2 (1 + S)
− c2

2 (1− S)

)
(χa(1)χb(2) + χb(1)χa(2))

An appropriate choice of coefficients (specifically c1
c2

= − 1+S
1−S ) causes the ionic terms to vanish completely.

The ratio c1
c2

varies from 0 to -1 at the dissociation limit. The correlation energy is defined as the difference
between the energy obtained from this wavefunction and the Hartree Fock energy. Notice that in order to
get a better energy, we have had to abandon the idea that electrons live in orbitals – this is a big leap!
In practice, CI is performed by constructing linear combinations of ground and excited determinants based
on the Hartree-Fock orbitals. The optimum linear combination Φ =

∑
i CiΦi where Φi are now determinants,

not orbitals, is then found using the linear variation method.
Example: H2:

Φ = C1Φi + C2Φ2

Φ1 =
1√
2

∣∣∣∣∣∣1σg(1)
¯1σg(1)

1σg(2) ¯1σg(2)

∣∣∣∣∣∣ Φ2 =
1√
2

∣∣∣∣∣∣1σu(1)
¯1σu(1)

1σu(2) ¯1σu(2)

∣∣∣∣∣∣
and the secular determinant we need to solve is:∣∣∣∣∣∣〈Φ1|Ĥ|Φ1〉 − E 〈Φ2|Ĥ|Φ1〉

〈Φ1|Ĥ|Φ2〉 〈Φ2|Ĥ|Φ2〉 − E

∣∣∣∣∣∣ = 0

We have already encountered the matrix element 〈Φ1|Ĥ|Φ1〉 - it is just the ground-state energy of H2:

〈Φ1|Ĥ|Φ1〉 = 2E1σg
+ J1σg1σg

Similarly, we can show that

〈Φ2|Ĥ|Φ2〉 = 2E1σu
+ J1σu1σu

〈Φ1|Ĥ|Φ2〉 = 〈Φ2|Ĥ|Φ1〉 = K1σg1σu

(see Problems 1, Qu 7)
So the total energy including CI is the lowest root of
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∣∣∣∣∣∣2E1σg
+ J1σg1σg

− E K1σg1σu

K1σg1σu 2E1σu + J1σu1σu − E

∣∣∣∣∣∣ = 0 (41)

Solution of this determinant for different values of r gives the dashed curve in Figure 20.
Note that if the off-diagonal elements (K1σg1σu

) in Equation 41 are zero, there is no mixing of configurations.
So configuration interaction is most significant when K is large (see previous lecture for a discussion of when
this is the case).
For larger molecules, many millions or even billions of excited determinants may be needed for good accuracy.
The methods (acronyms CI, CID, CISD(T), CASSCF, MRCI...) can be very accurate but very expensive.

Figure 21: Singly and doubly excited configurations and the approach to the ’exact’ limit.

13 Density Functional Theory
A fundamentally different approach, based on the density, ρ, (a 3-dimensional variable) rather than the wave-
function (a 3n-dimensional entity, where n is the number of electrons). Based on Theorems by Hohenberg
and Kohn (Kohn, Nobel prize 1998):

1. The energy is uniquely defined by the electron density, ρ.

2. The ground-state energy can be obtained variationally: the density that minimises the total energy is
the exact ground-state density.

In principle, orbitals are not needed for DFT, but in practice it is very difficult to calculate the KE term
(− 1

2∇
2) accurately using the density alone. Kohn and Sham developed a methodology wherein the electron

density is modelled as a system of fictitious non-interacting electrons which occupy the ‘Kohn-Sham orbitals’
and reproduce the real density. This leads to a set of 1-electron Kohn-Sham equations very similar in
structure to the Hartree Fock equations:

ĤKSφi =

(
−1

2
∇2 + Veff

)
φi = εiφi

Veff = V (r) + J(r) + Vxc(r)

(42)
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V (r) and J(r) are the electron-nuclear and coulomb potentials, precisely as in HF theory. Vxc(r) is the
so-called ‘exchange-correlation’ potential, which determines both the exchange and correlation effects.
Notice that the influence of correlation is introduced through the Hamiltonian, rather than by expanding the
wavefunction beyond the HF single determinant. Therefore it is appealing in terms of cost. The problem is
that the exact form of Vxc(r) is unknown, and there are hundreds (thousands ...) of different approximations
to it (BP86, BLYP, HCTH, B3LYP, PBE, rev-PBE........ – the so-called ‘functional zoo’). Nearly 30 years
after it was first proposed, the most popular remains B3LYP (‘everybody’s favourite functional’).

The simplest density functional for the exchange energy, the so-called ’local density approximation, is based
on the properties of the Uniform Electron Gas:

Ex
LDA = −

(
3

4

)(
3

π

)1/3

(4π)

∫ ∞

0

r2ρ(r)4/3dr (43)

This turns out to be a surprisingly good approximation. Recall in Equation 22 we calculated J for two
electrons in a 1s orbital. Also recall that if the two electrons are in the same orbital, J = K and that the
exchange energy is intrinsically negative. The expression for the Hartree-Fock exchange energy is then:

Ex
HF = −2

(α
π

)1/2
= −

(
22

π

)1/2

α1/2 ∼ −1.128α1/2

Using the expression for the orbital,

χ =

(
2α

π

)3/4

e−αr2

we can express the density as

ρ = 2

(
2α

π

)3/2

e−2αr2

and plugging into equation 44, we get, with use of the standard integral in Equation 17 and some collecting
of terms:

Ex
LDA = −

(
317

219π5

)1/6

α1/2 ∼ −0.964α1/2

The value is about 15% too low. To correct for this, Slater introduced an empirical correction factor to give
the so-called ’Slater Xα’ expression:

Ex
Xα = −1.05Ex

LDA ∼ −1.013α1/2 (44)

Slater’s exchange expression was used extensively, particularly in solid-state physics, for many years. More
modern functionals use more complex expressions for Ex and get better agreement with experiment, but the
principle is the same - the only difference is that the integral is harder!

Correlation energies can be calculated using the same principles, but the expressions are typically more
complex.

14 Semi-empirical theory
The number of 2-electron integrals in a HF expansion scales as N4 where N is the number of basis functions.
Thus reducing the size of the basis set and avoiding the calculation of some of the integrals is clearly an
advantageous strategy. There are two ways to do this.

1. We can parameterise (or set to zero) many of the 2-electron integrals that make up the Fock matrix
(such as those in Table 1), but leave the iterative structure unchanged. Depending on the parameterisation
scheme, this leads to a family of methods, CNDO, INDO, MINDO, ZINDO, AM1, AM2 etc. etc.. ’NDO’
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is ’neglect of differential overlap’. AM1 etc. were developed in Austin, Texas - hence Austin model 1, 2 etc.
These methods were popular up to the 1980’s, but have now largely been supplanted by DFT. There are
still some niche applications in e.g. electronic spectroscopy (they provide a quick way of approximating the
CI matrix).

2. We can be more radical and try to guess the structure of the final Fock matrix (as in Equation 38).
This removes the need to calculate any of the individual matrix elements, and also the need for iteration.
Hückel theory is the ultimate extension of this approach, but a more useful middle ground is extended Hückel
theory (EHT, for short). It should be emphasised that the approximations in these methods are so severe
that it is not realistic to expect quantitative results. So extended Hückel theory is typically used for qualita-
tive studies of electronic structure based on overlap and symmetry arguments, but not for the calculation of
accurate energies or geometries. All of the MO diagrams and Walsh diagrams presented in the core course
Bonding in Molecules were generated using EHT.

14.1 Hückel theory
Also see Valence lectures 7/8. The ultimate extension of semi-empirical theory - the philosophy is to eliminate
the computation of matrix elements entirely by parameterisation at the Fock matrix element level. Thus it
is not iterative.

• Assume complete separation of σ and π systems (contrast Extended Hückel Theory, later, where
all valence orbitals are included)

• Assumes independent electrons: i.e. ψ = ψ1ψ2ψ3ψ4.. , a simple Hartree product, and E = E1 + E2 +
E3 + E4 + ...

• H11 = α the Coulomb integral

• H12 = β (the resonance integral) if 1 and 2 are nearest neighbours, 0 otherwise

• α and β usually given symbolic values rather than assigned to real numbers.

• Sij = δij
this makes the overlap matrix equal to the identity, and simplifies the secular equations from Ĥc = ScE
to Ĥc = cE. In a typical conjugated system S12 ≈ 0.2, so this seems a somewhat radical approxima-
tion. However it has little impact on the final solutions.

• Note geometry (i.e. bond lengths) is not considered at any point – only connectivity.

14.2 Extended Hückel theory
As with Hückel theory, the computation of matrix elements is avoided entirely by parameterisation of the
Fock matrix elements: again not iterative, but no assumptions are made about σπ separability: all valence
electrons included. Unlike Hückel theory, geometry determines overlaps, which are calculated explicitly (ig-
noring π overlap might be OK, but ignoring σ overlap is not reasonable!).

• Assumes independent electrons: ψ = ψ1ψ2ψ3ψ4.. and E = E1 + E2 + E3 + E4 + ...
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• Sij computed as in Hartree Fock theory, using a minimal basis of Slater-type orbitals. If you want to
see the details of how this is done, look at the python script EH.py in the course support materials.

• Hii = −Ii The ionisation energy of an electron in the appropriate orbital in the valence configuration
(e.g. sp3 for a tetrahedral carbon). In practice this is usually taken as the weighted average of 2s and
2p electrons in C, but the choice is not critical.

•
Hij = KSij

[
Hii +Hjj

2

]
Wolfsberg-Helmholtz formula

• K = 1.75 reproduces rotational barrier for ethane, but the choice is not critical. Early versions used
the simpler Hij = KSij

• Solve matrix equation Hc = ScE to get energies and eigenfunctions (=orbitals)
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Example: CH4 valence orbitals: C 2s, C 2px,y,z H 1s

Figure 22: Definition of axis system for CH4.

Work flow:
Construct S using geometry and form of basis functions (Table 3)

Parameters: C : ζ2s,2p = 1.625 H : ζ1s = 1.20 C −H = 1.09

Å (this information is only required to construct overlap matrix).

Table 3: Overlap matrix for CH4

C 2s C 2pz C 2px C 2py H 1s(1) H 1s(2) H 1s(3) H 1s(4)

C 2s 1 0 0 0 0.5183 0.5183 0.5183 0.5183

C 2pz 0 1 0 0 0.2819 0.2819 -0.2819 -0.2819

C 2px 0 0 1 0 -0.2819 0.2819 0.2819 -0.2819

C 2py 0 0 0 1 0.2819 -0.2819 0.2819 -0.2819

H 1s(1)) 0.5183 0.2819 -0.2819 0.2819 1 0.1844 0.1844 0.1844

H 1s(2) 0.5183 0.2819 0.2819 -0.2819 0.1844 1 0.1844 0.1844

H 1s(3) 0.5183 -0.2819 0.2819 0.2819 0.1844 0.1844 1 0.1844

H 1s(4) 0.5183 -0.2819 -0.2819 -0.2819 0.1844 0.1844 0.1844 1

Insert diagonal elements Hii (usually tabulated) into H
Calculate off-diagonal elements Hij using Wolfsberg-Helmholtz formula. (Table 4)

Construct secular determinant and solve for E, cn

39



Table 4: Hamiltonian matrix for CH4

C 2s C 2pz C 2px C 2py H 1s(1) H 1s(2) H 1s(3) H 1s(4)

C 2s -19.44 0 0 0 -14.98 -14.98 -14.98 -14.98

C 2pz 0 -10.67 0 0 -5.99 -5.99 5.99 5.99

C 2px 0 0 -10.67 0 5.99 -5.99 -5.99 5.99

C 2py 0 0 0 -10.67 -5.99 5.99 -5.99 5.99

H 1s(1) -14.98 -5.99 5.99 -5.99 -13.6 -4.39 -4.39 -4.39

H 1s(2) -14.98 -5.99 -5.99 5.99 -4.39 -13.6 -4.39 -4.39

H 1s(3) -14.98 5.99 -5.99 -5.99 -4.39 -4.39 -13.6 -4.39

H 1s(4) -14.98 5.99 5.99 5.99 -4.39 -4.39 -4.39 -13.6

Table 5: Results (eigenvalues and eigenfunctions) of an extended Hückel calculation on CH4

orbital 1 2 3 4 5 6 7 8

Eigenvalues (energies)

E -23.21 -14.93 -14.93 -14.93 6.06 6.06 6.06 34.0

Occup 2 2 2 2 0 0 0 0

Eigenfunctions (MOs)

C 2s 0.58 0 0 0 0 0 0 1.70

C 2pz 0 -0.12 0.48 0.20 0.25 -0.31 1.09 0

C 2px 0 -0.28 0.12 -0.44 -0.92 0.60 0.38 0

C 2py 0 0.44 0.20 -0.23 -0.66 -0.95 -0.12 0

H 1s(1) 0.19 0.17 -0.10 -0.52 1.0 0.02 0.45 -0.69

H 1s(2) 0.19 0.36 0.34 0.25 -0.28 1.01 0.33 -0.69

H 1s(3) 0.19 -0.50 0.24 0.0 0.0 -0.67 -0.86 -0.69

H 1s(4) 0.19 -0.03 -0.48 0.28 -0.73 0.36 0.74 -0.69

15 Problems - 1 and 2
15.1 Problems 1
1. Write down the Slater determinant for the ground states of the following: Li, He2 and Li2.

2. The z component of the spin angular momentum operator is

Ŝz =

n∑
j=1

ŝjz

. Show that

Φ =
1√
3

∣∣∣∣∣∣∣∣∣
1s(1) 1̄s(1) 2s(1)

1s(2) 1̄s(2) 2s(2)

1s(3) 1̄s(3) 2s(3)

∣∣∣∣∣∣∣∣∣
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is an eigenfunction of Ŝz and evaluate its eigenvalue.

For the next two questions, you will need the standard integrals:∫ +∞

−∞
e−bx2

dx =

√
π

b

∫ +∞

−∞
x2e−bx2

dx =
1

2b

√
π

b

3. Evaluate the overlap matrix element between a normalised p-type Gaussian basis function located at the
origin, χa, and an s-type Gaussian located at (0,0,a), χb. The exponent in both cases is α.

χa = N1ze
−α(x2+y2+z2) χb = N2e

−α(x2+y2+(z−a)2)

4. Evaluate the off-diagonal matrix element of the kinetic energy operator, Tab = 〈χa|T̂ |χb〉 between an
s-type Gaussian basis function located at the origin, χa and an s-type Gaussian located at (0,0,a), χb. The
exponent in both cases is α.

χa = N3e
−α(x2+y2+z2) χb = N4e

−α(x2+y2+(z−a)2)

5. Show that the total energy, T + V , of a hydrogen atom described by a single gaussian function,
χa = Ne−αr2 , is minimised when α = 8

9π .

6. The total nuclear-electron attraction for an electron in an s orbital centred on one of the two nuclei
in H2

+ (χa) is given by:

Aaa =
∑
C

〈χa|
−ZC

rC
|χa〉

where

χa =

(
2α

π

)3/4

e−αr2

show that for r = 0.77 Å and α = 0.4166, Aaa = −1.676 au.

hint: to do this you need to sum over the interaction with both nuclei, the one that the orbital is cen-
tred on and the other one. The first one is as set out in the notes (rc = 0, Equation ??) but for the second
one, the distance is not large enough to ensure that erf(t) ≈ 1. You will therefore need to estimate the value
for erf(t) by interpolating the values in the table given in the handout.

7. We showed in the handout (Equation 30) that for the ground state configuration of H2,

ψ1 =
1√
2
(1σg(1) ¯1σg(2)− 1σg(2) ¯1σg(1)) =

1√
2

∣∣∣∣∣∣1σg(1)
¯1σg(1)

1σg(2) ¯1σg(2)

∣∣∣∣∣∣
E1 = 2E1σg

+ J1σg1σg

By expanding the expression

〈ψ2|Ĥ|ψ2〉 = E = 〈ψ2|Ĥ1 + Ĥ2 +
1

r12
|ψ2〉

Show that the energy of the doubly excited configuration

ψ2 =
1√
2
(1σu(1) ¯1σu(2)− 1σu(2) ¯1σu(1)) =

1√
2

∣∣∣∣∣∣1σu(1)
¯1σu(1)

1σu(2) ¯1σu(2)

∣∣∣∣∣∣
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E2 = 2E1σu + J1σu1σu

and also that the matrix element
〈ψ1|Ĥ|ψ2〉 = K1σg1σu

8. The expression E = E1σg
+ E1σu

+ J1σg1σu
− K1σg1σu

was derived in the handout for the first excited
triplet state of H2 (Equation 30),

3ψ =
1√
2
(1σg(1)1σu(2)− 1σu(1)1σg(2)) =

1√
2

∣∣∣∣∣∣1σg(1) 1σu(1)

1σg(2) 1σu(2)

∣∣∣∣∣∣
The wavefunction above is in fact the MS = 1 component of the triplet state, which can also represented as

3ψ(MS = 1) =
1√
2
[1σg(1)1σu(2)− 1σu(1)1σg(2)]α(1)α(2)

where the spatial and spin parts have been separated. The MS = 0 component of the same triplet state is:

3ψ(MS = 0) =
1

2
[1σg(1)1σu(2)− 1σu(1)1σg(2)] [α(1)β(2) + β(1)α(2)]

while the MS = 0 component of the corresponding open-shell singlet excited state is given by:

1ψ(MS = 0) =
1

2
[1σg(1)1σu(2) + 1σu(1)1σg(2)] [α(1)β(2)− β(1)α(2)]

Show that these two wavefunctions can be represented as linear combinations of two Slater determinants.

1,3ψ(MS = 0) =
1

2

∣∣∣∣∣∣1σg(1)
¯1σu(1)

1σg(2) ¯1σu(2)

∣∣∣∣∣∣±
∣∣∣∣∣∣
¯1σg(1) 1σu(1)

¯1σg(2) 1σu(2)

∣∣∣∣∣∣


By expanding, verify that the energy of the MS = 0 component of the triplet state is also

ES=1 = E1σg
+ E1σu

+ J1σg1σu
−K1σg1σu

and show that the energy of the corresponding open-shell singlet state is

ES=0 = E1σg + E1σu + J1σg1σu +K1σg1σu
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15.2 Problems 2
1. Using the following data, set up the 2× 2 overlap and Hamiltonian matrices for one component of the π
system (π and π∗) of CO (you need only consider the px orbitals as the py are equivalent by symmetry).
You may use the following overlap integral:

SC2pxO2px
= 0.27

ionisation energies (=diagonal matrix elements, Hii):

HC2pC2p
= −11.4 eV HO2pO2p

= −14.8 eV

and the Wolfsberg-Helmholtz formula:

Hij = 1.75× Sij ×
[
Hii +Hjj

2

]
Solve the 2×2 determinant and calculate the coefficients in the bonding and antibonding orbitals. Comment
on your results.
2. Using the following data, set up the overlap and Hamiltonian matrices for H2O. All other overlap integrals
are either 1 (Sii) or zero (Sij).

SO2sH1s
= 0.41

SO2pzHa1s
= SO2pzHb1s

= −0.20

SO2pxHa1s
= −SO2pxHb1s

= −0.30

SHa1sHb1s
= 0.16

ionisation energies (=diagonal matrix elements, Hii):

HO2sO2s
= −32.3 eV HO2pO2p

= −14.8 eV HH1sH1s
= −13.6 eV

the Wolfsberg-Helmholtz formula:

Hij = 1.75× Sij ×
[
Hii +Hjj

2

]
Using the Jupyter notebook supplied, solve the 6 × 6 secular determinant to give the orbital energies and
the corresponding coefficients in the LCAO expansion. Use the coefficients to sketch the orbitals.

16 More on DFT

TTF [ρ (r)] =
3

10

(
3π2
)2/3 ∫

ρ5/3 (r) dr
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ETF [ρ (r)] =
3

10

(
3π2
)2/3 ∫

ρ5/3 (r) dr − Z

∫
ρ (r)

r
dr +

1

2

∫
ρ (r1) ρ (r2)

r12
dr1dr2

E (ρ) = T (ρ) + En−e (ρ) + Ee−e (ρ)

E (ρ) = T (ρ) + En−e (ρ) + Ecoulomb (ρ) + Exc (ρ)

Ex
LDA = −

(
3

4

)(
3

π

)1/3 ∫ ∞

−∞
ρ(r)4/3dV (45)
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