Bonding in Molecules

Lecture 3

Molecular shapes

Known shape of some AH2 molecules							
Molecular species	No. of valence electrons	Shape					
LiH ₂ +	2	Bent					
LiH ₂ , BeH ₂ +	3	Linear					
BeH ₂ , BH ₂ +	4	Linear					
BH ₂ , AIH ₂ , CH ₂ ⁺	5	Bent					
CH ₂ , SiH ₂ , BH ₂ ⁻ , NH ₂ ⁺	6	Bent					
NH ₂ , PH ₂ , CH ₂ ⁻ , OH ₂ ⁺	7	Bent					
OH ₂ , SH ₂ , NH ₂ ⁻ , FH ₂ ⁺	8	Bent					

Molecular species	angle
BH ₂	131
CH ₂	110
SiH ₂	93
NH ₂	103
OH ₂	104.5
SH ₂	92.1
FH ₂ +	118

 AH_2

 $D_{\infty h}$

Α

2 x H

 C_{2v}

Ε

Recall: a molecule adopts the structure that best stabilises the HOMO. If the HOMO is unperturbed by the structural change under consideration, then the occupied MO lying closest to it governs the geometric preference.

OH₂ vs SH₂ vs SeH₂?

VSEPR?

Decreased s/p hybridisation? (note bonding with pure p orbitals implies 90° angles)

Linear	AH ₂
--------	-----------------

Bent AH₂

1a ₁ ² 1b ₂ ² +	2a ₁ ¹		2a ₁ ²		2a ₁ ² 1b ₁ ¹		2a ₁ ² 1b ₁ ²	
	BH ₂	131	CH ₂	110	NH ₂	103	OH ₂	104.5
			NH ₂ +	115-120	OH ₂ +	110.5	FH ₂ +	118
			BH2-	102	CH ₂ -	99	NH2 ⁻	104
	AIH ₂	119	SiH₂	93	PH ₂	92	SH ₂	92.1
					AsH ₂	91	SeH ₂	90.6
							TeH ₂	90

2 x 'sp' hybrids + 2 x p lone pairs

 $3 \times (sp^2)$ hybrids + 1 x p lone pair

more p character in bonding orbitals

2nd order JT effect mixes s character (originally in $2\sigma_g$) into the lone pair ($1\pi_u$) so more p character accumulates in the bonding orbitals.

Strength of 2nd order JT effect proportional to $1/\Delta E$

2 factors to consider:

Decrease in electronegativity destabilises π_{u}

3/4s orbitals of S/Se are lower than 2s of O (increased penetration) and also overlap more weakly with H 1s because they are diffuse. Both factors stabilise σ_g

both make 2nd order JT effect stronger in the heavier elements

PES revisited: origin of fine structure

PES revisited: origin of fine structure

nuclear configuration

PES revisited: HF

PES revisited: H₂O

(0,0) band most intense

The shapes of H_3^+ and H_3^- : 1st order JT effects, 3-centre-4-electron and 3-centre-2-electron bonds

Consider MOs for the 2 limiting shapes for a 3-atom system: linear $(D_{\infty h})$ and triangular (D_{3h})

(using the SALCS given in the handout)

The shapes of H₃⁺ and H₃⁻: 1st order JT effects, 3-centre-4-electron and 3-centre-2-electron bonds

Consider MOs for the 2 limiting shapes for a 3-atom system: linear $(D_{\infty h})$ and triangular (D_{3h})

 H_3^{-} (a 3-centre-4-electron bond) *c.f.* hypervalent species such as HF_2^{-} , XeF_2 H₃⁺ (a 3-centre-2-electron bond) *c.f.* electron deficient species such as boranes

Bonding in Hypervalent Molecules

XeF₂ ('hypervalent' = 10 electrons on Xe) Possible explanations?

sp³d hybridisation?

lonic resonance forms?

order 0.5

F—Xe—F O≡C≡O Symmetry analysis $(D_{\infty h})$ σ_{u} **>-** - - - - - (σ_{g} σ_{u} $\left.\begin{array}{c} \cdots \\ 0 \end{array}\right\} \pi_{u} \qquad \left.\begin{array}{c} 0 \\ 0 \end{array}\right\} \pi_{g} \qquad \left.\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$ §-----§ §-----§ **β**--- σ_g π_{u} ----Ο ^σu

----σ_g

