Bonding in Molecules

Lecture 2

MO theory for polyatomic molecules

Guiding principles: orbitals do *not* interact (i) if they do not overlap

(ii) if they have very different energies

In unsymmetric cases, a given molecular orbital 'resembles' the atomic orbital to which it lies closest in energy

What happens for less electronegative A?

Orbital energies

Heteronuclear diatomics, AH: (HF vs HB)

 $\phi(\mathbf{n}\sigma) = \mathbf{c}_{1\chi_{1s(\mathbf{H})}} + \mathbf{c}_{2\chi_{2s(\mathbf{A})}} + \mathbf{c}_{2\chi_{2pz(\mathbf{A})}}$

s/p mixing less important

s/p mixing more important

Protocol for constructing MO diagrams for AH_n (H₂O, NH₃, CH₄)

- 1) Identify symmetry equivalent atoms (hydrogens in this case)
- 2) Generate Symmetry Adapted Linear Combinations on these identical atoms
- 3) Combine SALCS with orbitals on A

For more complex molecules, there may be more than 2 symmetry equivalent types of atoms. In this case, MO diagrams can be constructed from the orbitals of two chemically reasonable fragments.

For example, the bonding in $[Cl_3Pt(C_2H_4)]^-$ can reasonably be considered in terms of the interaction between $[PtCl_3]^-$ and C_2H_4 .

Symmetry analysis:

	C_{2v} (2mm)	Е	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$			
	A ₁	1	1	1	1	Z	x^2, y^2, z^2	
	A_2	1	1	-1	-1	R_z	ху	
	\mathbf{B}_1	1	-1	1	-1	x, R_y	XZ	
	B_2	1	-1	-1	1	y, R_x	yz	
Г (2 х Н	1s) =	2	0	0	2			
		a ₁ +	b ₂	A ₁ (1/2)	$^{1/2}(\phi_1+\phi_2)$		• •	
				B₂ (1/2)	$^{1/2}$ (ϕ_1 - ϕ_2)		$\bigcirc \bullet$	

Ε

0

0

H₂O

2 x H

H₂O

0

0

2 x H

		(Oxygen A0	C		Hydrog	gen AO
МО	1s	2s	2pz	2ру	2px	1 s1	1s2
1 a1	-0.222	0.843	-0.132	0	0	0.151	0.151
2a1	-0.093	0.516	0.787	0	0	-0.264	-0.264
1b2	0	0	0	0.624	0	0.424	-0.424
1b1	0	0	0	0	1	0	0

Symmetry analysis:

	C_{3v}	Е	$2C_{3}$	$3\sigma_{v}$		
	(3m)					2 2 2
	A_1	1	1	1	Z	$x^2 + y^2, z^2$
	A_2	1	1	-1	Rz	
	E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, 2xy)(xz, yz)$
Г(3 х Н	1s) =	3	0	1		
	,	U	U			
		a + e		n = 3 (C	(_{3v})	
					1/2	
				A₁ (1/3)	$\phi^{1/2} (\phi_1 + \phi_2 + \phi_3)$	
				F (1/6 ^{1/}	(2) (2 $\phi_1 - \phi_2 - \phi_2$)	
					$(2\psi_1 - \psi_2 - \psi_3)$	\frown \frown
				$(1/2^{1})$	$^{/2})(\phi_2 - \phi_3)$	

Symmetry analysis:

C _{3v} (3m)	Ε	$2C_{3}$	$3\sigma_{v}$		
A ₁	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	R _z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2 - y^2, 2xy)(xz, yz)$

$$\Gamma(N2s) = a_1$$

$$\Gamma(N2p_x + N2p_y) = e_1$$

$$\Gamma(N2p_z) = a_1$$

Ε

 $CH_4(T_d)$

Symmetry analysis:

	$T_{\rm d}$ (43m)	Ε	8 <i>C</i> ₃	3 <i>C</i> ₂	6 <i>S</i> 4	$6\sigma_d$			
	A1	1	1	1	1	1		$x^2 + y^2 + z^2$	
	A_2	1	1	1	$^{-1}$	-1			
	Е	2	-1	2	0	0		$(2z^2 - x^2 - y^2), \sqrt{3}(x^2 - y^2)$	
	T_1	3	0	-1	1	-1	(R_x, R_y, R_z)		
	T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)	
Г(4 x ł	H1s) =	4	1	0	0	2			
,					11 — 4	(<i>I d</i>)			
		a ₁ +	t ₂		A ₁ (1	./4) ^{1/2} ($(\phi_1 + \phi_2 + \phi_3 + \phi_3 + \phi_3)$	φ ₄)	
					T₂ (1	/4 ^{1/2}) ($\phi_1 + \phi_2 - \phi_3 - \phi_3$	₄)	
					(1	/4 ^{1/2}) ($\phi_1 - \phi_2 - \phi_3 + \phi_3$	p_{4}	Q
					(1	/4 ^{1/2}) ($\phi_1 - \phi_2 + \phi_3 - \phi_3$		Ò

 $CH_4(T_d)$

Symmetry analysis:

Г**(С2**р_{х,у,z})

Td	Е	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$		
(4 3 <i>m</i>)							
A1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2), \sqrt{3}(x^2 - y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T ₂	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
Γ (C	C2s)		$= a_1$				
	-				n.b	no s-p m	nixing

= t₂

An experimental test: Photoelectron Spectroscopy

Relates PES to MO diagrams through Koopmans' approximation: $IE = -\mathcal{E}_i$

PES of H₂

HF

HF+

Shapes of molecules: Walsh diagrams

Walsh's rule

A molecule adopts the structure that best stabilises the HOMO. If the HOMO is unperturbed by the structural change under consideration, then the occupied MO lying closest to it governs the geometric preference.

In most cases this means that molecules tend to adopt the geometry that maximises the HOMO-LUMO gap.

Consider AH₂ molecules

Known shape of some AH2 molecules									
Molecular species	No. of valence electrons	Shape							
LiH ₂ +	2	Bent							
LiH ₂ , BeH ₂ +	3	Linear							
BeH ₂ , BH ₂ ⁺	4	Linear							
BH ₂ , AIH ₂ , CH ₂ ⁺	5	Bent							
CH ₂ , SiH ₂ , BH ₂ ⁻ , NH ₂ ⁺	6	Bent							
NH ₂ , PH ₂ , CH ₂ ⁻ , OH ₂ ⁺	7	Bent							
OH ₂ , SH ₂ , NH ₂ ⁻ , FH ₂ ⁺	8	Bent							

Molecular species	angle
BH ₂	131
CH ₂	110
SiH ₂	93
NH ₂	103
OH ₂	104.5
SH ₂	92.1
FH ₂ +	118

First consider bonding at the 2 limits (C_{2v} and $D_{\infty h}$)

First consider bonding at the 2 limits (C_{2v} and $D_{\infty h}$)

$D_{ m \infty h}$	Ε	$2C_{\infty}^{\phi}$	 $\infty\sigma_v$	i	$2S_{\infty}^{\phi}$	 ∞C_2		
Σ_g^+	1	1	 1	1	1	 1		x ² -
Σ_g^-	1	1	 -1	1	1	 -1	R_z	
Πg	2	$2\cos\phi$	 0	2	$-2\cos\phi$	 0	(R_x, R_y)	(xz
$\Delta_{\rm g}$	2	$2\cos 2\phi$	 0	2	$2\cos 2\phi$	 0		(x ²
Σ_{μ}^{+}	1	1	 1	-1	-1	 -1	Z	
Σ_{z}^{-}	1	1	 -1	-1	-1	 1		
\prod_{u}	2	$2\cos\phi$	 0	-2	$2\cos\phi$	 0	(x,y)	
Δ_{u}	2	$2\cos 2\phi$	 0	-2	$-2\cos 2\phi$	 0		

Symmetry analysis: For the A atom (4 AOs):

 Γ (2s) = σ_g Γ (2p_z) = σ_u Γ (2p_{x,y}) = π_u

For the H atoms (2 x 1s AO):

$$\Gamma (2 \times 1s) = \sigma_g + \sigma_u \qquad \bigcirc -A - \sigma_g \\ \bigcirc -A - \sigma_g \\ \bigcirc -A - \sigma_g \\ \sigma_u \\ \bigcirc \sigma_u$$

 $D_{\infty h}$

 AH_2

 $D_{\infty h}$

Α

2 x H

 C_{2v}

Ε