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Some basics: 

In studies of molecular electronic structure, we seek solutions of the time-independent 

Schrödinger equation, 

−
ℏ

2𝑚
∇2𝜑 + 𝑉𝜑 = 𝐸𝜑 

 

where m is the mass of an electron, V is the potential and 2  is the Laplacian operator 

 

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

 

The wavefunction,  , must be single-valued, finite and continuous. 

 

Born-Oppenheimer approximation 

The above equation is derived from the complete (electronic + nuclear) Schrödinger 

equation by regarding the nuclei as being fixed in space, and so the total wavefunction 

factorises as 

    , ( ) ( )R r r R  

 

The electronic Hamiltonian, Ĥ , for a system with n electrons and N nuclei is then given by  

 

𝐻̂ = −
ℏ2

2𝑚
∑ ∇𝑖

2

𝑛

𝑖

−
𝑒2

4𝜋𝜀0
∑ ∑

𝑍𝑎

𝑟𝑖𝑎

𝑁

𝑎

𝑛

𝑖

+
𝑒2

4𝜋𝜀0
∑ ∑

1

𝑟𝑖𝑗

𝑛

𝑗>𝑖

𝑛

𝑖

+
𝑒2

4𝜋𝜀0
∑ ∑

1

𝑅𝑎𝑏

𝑁

𝑏>𝑎

𝑁

𝑎

= 𝐸𝜑 

 

 

 

The final term is independent of the position of the electrons, and 

adds a constant contribution to the energy (at fixed distance) 

This defines the potential energy curve: the electronic energy which 

depends parametrically on the nuclear coordinates. 

 

 

 

Linear Combination of Atomic Orbitals (LCAO) approximation 

 

Molecular orbitals are typically expanded as linear combinations of their atomic components: 

  a a

a

c  
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Slater determinants  (see Valence Lecture 3, pp 12) 

The Pauli principle: The total wavefunction must be antisymmetric under the exchange of 

identical particles.   

 

Example: For He, the 2-electron wavefunction 1 (1)1 (2)s s  is not antisymmetric 

because      1 (1)1 (2) 1 (2)1 (1)s s s s   

(note 1 (1)1 (2)s s  is shorthand for 1 (1)1 (2) (1) (2)s s   ) 

 

But the linear combination 

 
1
1 (1)1 (2) 1 (2)1 (1)

2
s s s s    is antisymmetric because 

        
1 1
1 (2)1 (1) 1 (1)1 (2) 1 (1)1 (2) 1 (2)1 (1)

2 2
s s s s s s s s  

 

Example: Li 1 (1)1 (2)2 (3)s s s  is not antisymmetric.  

 
1
1 (1)1 (2)2 (3) 1 (2)1 (1)2 (3)

2
s s s s s s    

is antisymmetric wrt exchange of electrons 1 and 2, but not 1 and 3 or 2 and 3. 

 

  
   

   

1 (1)1 (2)2 (3) 1 (1)1 (3)2 (2) 1 (2)1 (1)2 (3)1

1 (2)1 (3)2 (1) 1 (3)1 (1)2 (2) 1 (3)1 (2)2 (1)6

s s s s s s s s s

s s s s s s s s s
 

is antisymmetric wrt exchange of all three. 

 

The antisymmetric wavefunction can be written as a Slater determinant 

 

He:  
1 (1) 1 (1)1 1

1 (1)1 (2) 1 (2)1 (1)
1 (2) 1 (2)2 2

s s
s s s s

s s
     

 

Li: 

1 (1) 1 (1) 2 (1)
1
1 (2) 1 (2) 2 (2)

6
1 (3) 1 (3) 2 (3)

s s s

s s s

s s s

   

 

He (triplet excited state, 1 1
1 2s s ):  

 

 
1 (1) 2 (1)1 1

1 (1)2 (2) 1 (2)2 (1)
1 (2) 2 (2)2 2

s s
s s s s

s s
     

Note using a single Slater determinant to represent the wavefunction is a convenient way to 

ensure that it conforms to the Pauli Principle, but it is by no means the only way (any linear 

combination of Slater determinants will also do the job, see configuration interaction) 
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H2
+ : linear variation theorem 

 

(n.b. only 1 electron, so Slater “determinant” is just a 1 x 1 determinant:   ) 

 

1 1trial n n a sa b sb

n

c c c       

 

   

   

 
 

 

1 1 1 1

1 1 1 1

ˆˆ
a sa b sb a sa b sb

trial

a sa b sb a sa b sb

c c H c cH
E

c c c c

    

     
 

 

Following the process set out in Prof Brouard’s ‘Valence’ lecture 4 (handout pp 18-23) or the 

equivalent derivation given in Appendix 1, minimisation of the trial wavefunction gives the 

following secular determinant: 

 

 

 

with eigenvalues that we can formulate in terms of matrix elements 

 

 
 




1

aa ab

ab

H H
E

S
 and 

1 1
ˆ

aa sa sa
H H   etc. 

(but note we have not yet defined Ĥ !) 

 

and eigenfunctions that we can anticipate from symmetry considerations: 

 

 
  


/ 1 1

1
1

2(1 )
g u sa sb

ab
S

     

 

To make further progress we need to convert the abstract “
aa

H ”, “
ab

H ” etc. into hard 

numbers. 

 

𝐻̂ = −
ℏ2

2𝑚
∇2 + 𝑉 = −

ℏ2

2𝑚
∇2 −

𝑒2

4𝜋𝜀0
(

1

𝑟𝑎
) −

𝑒2

4𝜋𝜀0
(

1

𝑟𝑏
) +

𝑒2

4𝜋𝜀0
(

1

𝑅𝑎𝑏
) 

 

= −
ℏ2

2𝑚
∇2 −

𝑗0

𝑟𝑎
−

𝑗0

𝑟𝑏
+

𝑗0

𝑅𝑎𝑏
 

𝑗0 =
𝑒2

4𝜋𝜀0
 

    

 

 
  

 
det 0

aa aa ab ab

ab ab bb bb

H ES H ES
H ES

H ES H ES
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𝑗0

𝑅𝑎𝑏
 is the repulsion between two nuclei – it is independent of the electron coordinates, so 

adds a constant term to the total energy. We will neglect this term in the following derivations 

(it can be trivially added in at the end of any energy calculation). 

 

See also ‘Valence’ lecture 2, P 8: 

Coulomb integral:       21 1 1ˆ
2

aa a a a a

a b

H H
r r

      

We will see how to compute these integrals shortly, but for now just note that 

   2

1

1 1

2
a a s

A

E
r

   , the energy of an electron in a hydrogen atom. 

    
1 1

1
'

s a a s

b

E E j
r

    


1

'
a a

b

j
r

  = Coulomb attraction between charge density 
2

a
  and nucleus b 

 

  

 

𝐻̂ = −
ℏ2

2𝑚
∇2 + 𝑉 = −

ℏ2

2𝑚
∇2 −

𝑒2

4𝜋𝜀0
(

1

𝑟𝑎
) −

𝑒2

4𝜋𝜀0
(

1

𝑟𝑏
) +

𝑒2

4𝜋𝜀0
(

1

𝑅𝑎𝑏
) 

 

A note on units: 

The Hamiltonian 

 

 

is given in SI units (distance in metres, mass in kg, charge in coulombs, energy in Joules).  

 

It is also often expressed in atomic units (distance in multiples of a0 [the Bohr radius],  

mass in multiples of me, charge in multiples of e, permittivity in multiples of 40, energy in  

multiples of Hartrees (atomic units). 

a0=0.529 x 10-10 m = 0.529 Å     e = 1.6022 x 10-19 C   me = 9.1095 x 10-31 kg 

1 hartree = 1 au = 
ℏ2

𝑚𝑒𝑎0
2 = 4.3598 x 10-18J = 27.21 eV 

 

In which case the Hamiltonian simplifies to    𝐻̂ = −
1

2
∇2 −

1

𝑟𝑎
−

1

𝑟𝑏
+

1

𝑅𝑎𝑏
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Likewise, the resonance integral:       21 1 1ˆ
2

ab a b a b

a b

H H
r r

      

but 
 
    
 

2

1

1 1

2
b s b

b

E
r

   

    
1 1

1
'

a b s a b s

a

E SE k
r

      

 


1

'
a b

a

k
r

  = interaction between overlap charge density 
a b

  and nucleus a  

 

 

Sub into solutions of secular equation:  

 
 

  
 

1 1

1 /1

' '

1 1g u

s s
E j SE k

E
S S

 

    
 

 
  

 
1 1

' '

1g s

j k
E E

S



 


or 

 
1 1

' '

1u s

j k
E E

S



 


 

 

 

Basis functions 

 

In order to evaluate 
1 g
E   or 

1 u
E  , we need to be able to calculate the various integrals 

involved in the above expressions. These include the overlap integrals,   , and the 

components of 
ij

H , which are the kinetic energy,  21

2
  , and the electron-nucleus 

interaction, 
1

A
r

  . When we get to H2, we will find that we also need to calculate 

electron-electron repulsion integrals of the type 
12

1
(1) (2) (1) (2)

r
     

 

To calculate these numbers we need to choose a mathematical representation of the atomic 

orbitals, .  For discrete molecules, there are 2 plausible choices, Slater-type orbitals and 

Gaussian-type orbitals. For solid-state (periodic) calculations, there is a third choice, a basis 

set of plane waves, but we will not be concerned with that here. 
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Slater-type orbitals (STOs):   𝑆𝑇𝑂 = 𝑁1𝑟𝑛−1𝑒−𝜁𝑟𝑌𝑙𝑚(𝜃, 𝜙) 

𝑁1 is the normalising constant. 

𝑌𝑙𝑚(𝜃, 𝜙) is a spherical harmonic, controlling angular dependence 

𝜁 is a measure of how contracted the function is (larger 𝜁 implies more contracted). In very 

simple (minimal) basis sets, 𝜁 is related to Slater’s effective nuclear charge, which controls 

radial behaviour, and can be calculated using Slater’s simple empirical rules. 

 

These replicate the behaviour of real atomic orbitals, so are the most intuitive option. 

 

Gaussian-type orbitals (GTOs):  𝐺𝑇𝑂 = 𝑁1𝑥𝑖𝑦𝑗𝑧𝑘𝑒−𝛼𝑟2
= 𝑁1𝑥𝑖𝑦𝑗𝑧𝑘𝑒−𝛼(𝑥2+𝑦2+𝑧2) 

Angular properties are specified by i, j, k:  (0,0,0) = s; (1,0,0) = px; (1,1,0) = dxy etc etc.   

The major difference is that the exponential decay is 𝑒−𝛼𝑟2
and not 𝑒−𝛼𝑟, which means that 

the orbital decays too quickly at large r, and fails to reproduce the cusp at the nucleus found 

in real atomic orbitals. Thus they are less accurate representations of a real atomic orbital 

than Slater functions. 

 

However, GTOs have 2 major advantages:  

(1) GTOs are separable in the x, y and z directions: 

 

𝐺𝑇𝑂 = 𝑁1𝑥𝑖𝑦𝑗𝑧𝑘𝑒−𝛼(𝑥2+𝑦2+𝑧2) = 𝑁1(𝑥𝑖𝑒−𝛼𝑥2
)(𝑦𝑗𝑒−𝛼𝑦2

)(𝑧𝑘𝑒−𝛼𝑧2
) 

 

the same cannot be said of STOs: 

𝑆𝑇𝑂 = 𝑁1𝑒−𝜁√(𝑥2+𝑦2+𝑧2) ≠ 𝑁1(𝑒−𝜁𝑥)(𝑒−𝜁𝑦)(𝑒−𝜁𝑧) 

 

(2) the product of 2 GTOs on different centres is just a different GTO centred somewhere in 

between (the Gaussian Product Theorem).  

 

Consider the product of two s-type gaussians (i = j = k = 0) with equal exponents, , one 

centred at 0x  , the other at x a   

𝐺𝑇𝑂1 = 𝑁1𝑒−𝛼𝑥2
          𝐺𝑇𝑂2 = 𝑁2𝑒−𝛼(𝑥−𝑎)2
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𝐺𝑇𝑂1 × 𝐺𝑇𝑂2 = 𝑁1𝑁2𝑒−𝛼𝑥2
𝑒−𝛼(𝑥−𝑎)2

= 𝑁1𝑁2𝑒−𝛼[𝑥2+(𝑥−𝑎)2] = 𝑁1𝑁2𝑒−𝛼(2𝑥2−2𝑎𝑥+𝑎2)

= 𝑁1𝑁2𝑒
−2𝛼(𝑥2−𝑎𝑥+

𝑎2

2
)

= 𝑁1𝑁2𝑒
−2𝛼[(𝑥−

𝑎
2

)
2

+
𝑎2

4
]

= 𝑒−
𝛼𝑎2

2 𝑁1𝑁2𝑒−2𝛼(𝑥−
𝑎
2

)
2

 

 

i.e. the product is another Gaussian with exponent 2 centred half way between the original 

basis functions (
2

a
x  ) and scaled by 𝑒−

𝛼𝑎2

2  

 

 

These two features combine to make the computation of all integrals much easier for 

Gaussian functions than for Slater functions. It is harder, but still possible, to calculate the 1-

electron integrals (overlap, kinetic energy, electron-nucleus interaction) using a Slater-type 

basis, but if electron-electron repulsion integrals are needed (as they are for anything with >1 

electron!), Slater-type functions are a very poor choice.  

 

 

Example 1: an overlap integral between two s orbitals on different atoms. 

 

Take 2 s-type gaussians with equal exponents, one at the origin, the other at (0,0,a).  

𝑆 = 𝑁1𝑁2 ∭ 𝑒−𝛼(𝑥2+𝑦2+𝑧2)𝑒−𝛼(𝑥2+𝑦2+(𝑧−𝑎)2)𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

 

 

First, we need to normalise each basis function. 

1 = 𝑁1
2 ∭ 𝑒−𝛼(𝑥2+𝑦2+𝑧2)𝑒−𝛼(𝑥2+𝑦2+𝑧2)𝑑𝑥𝑑𝑦𝑑𝑧

+∞

−∞

= 𝑁1
2 ∫ 𝑒−2𝛼𝑥2

𝑑𝑥
+∞

−∞

∫ 𝑒−2𝛼𝑦2
𝑑𝑦

+∞

−∞

∫ 𝑒−2𝛼𝑧2
𝑑𝑧

+∞

−∞

 

using the standard integral 

∫ 𝑒−𝑏𝑥2
𝑑𝑥

+∞

−∞

= √
𝜋

𝑏
 

 

1 = 𝑁1
2 (

𝜋

2𝛼
)

1/2

(
𝜋

2𝛼
)

1/2

(
𝜋

2𝛼
)

1/2

= 𝑁1
2 (

𝜋

2𝛼
)

3/2
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𝑁1(= 𝑁2) = (
2𝛼

𝜋
)

3/4

 

 

𝑆 = (
2𝛼

𝜋
)

3/4

. (
2𝛼

𝜋
)

3/4

∫ 𝑒−2𝛼𝑥2
𝑑𝑥

+∞

−∞

∫ 𝑒−2𝛼𝑦2
𝑑𝑦

+∞

−∞

∫ 𝑒−𝛼[𝑧2+(𝑧−𝑎)2]𝑑𝑧
+∞

−∞

= (
2𝛼

𝜋
)

3/2

(
𝜋

2𝛼
)

1/2

(
𝜋

2𝛼
)

1/2

∫ 𝑒−𝛼[𝑧2+(𝑧−𝑎)2]𝑑𝑧
+∞

−∞

 

 

Using the Gaussian product theorem to deal with the integral in 𝑧: 

 

∫ 𝑒−𝛼[𝑧2+(𝑧−𝑎)2]𝑑𝑧
+∞

−∞

= 𝑒
−𝛼(

𝑎2

2
)

∫ 𝑒
−2𝛼(𝑧−

𝑎
2

)
2

𝑑𝑧 = 𝑒
−𝛼(

𝑎2

2
)

+∞

−∞

(
𝜋

2𝛼
)

1/2

 

 

∴ 𝑆 = (
2𝛼

𝜋
)

3/2

(
𝜋

2𝛼
)

1/2

(
𝜋

2𝛼
)

1/2

(
𝜋

2𝛼
)

1/2

𝑒
−𝛼(

𝑎2

2
)

= 𝑒
−𝛼(

𝑎2

2
)
 

 

Example 2: kinetic energy of an electron in a 1s orbital, ⟨𝜙1𝑠|𝑇̂|𝜙1𝑠⟩ 

 

𝑇̂ = −
1

2
∇2= −

1

2
(

𝛿2

𝛿𝑥2
+

𝛿2

𝛿𝑦2
+

𝛿2

𝛿𝑦2
) 

 

Taking the x component (y and z give identical contributions), we need to evaluate: 

 

𝑁1𝑁2 ∫ 𝑒−𝛼𝑥2 𝑑2

𝑑𝑥2
(𝑒−𝛼𝑥2

)𝑑𝑥
+∞

−∞

∫ 𝑒−2𝛼𝑦2
𝑑𝑦

+∞

−∞

∫ 𝑒−2𝛼𝑧2
𝑑𝑧

+∞

−∞

 

 
𝑑2

𝑑𝑥2
(𝑒−𝛼𝑥2

) = (4𝛼2𝑥2 − 2𝛼)𝑒−𝛼𝑥2
 

 

So we need to evaluate 2 integrals and sum them:  

−2𝛼𝑁1𝑁2 ∫ 𝑒−2𝛼𝑥2
𝑑𝑥 ∫ 𝑒−2𝛼𝑦2

𝑑𝑦
+∞

−∞

∫ 𝑒−2𝛼𝑧2
𝑑𝑧

+∞

−∞

+∞

−∞

 

and 

4𝛼2𝑁1𝑁2 ∫ 𝑥2𝑒−2𝛼𝑥2
𝑑𝑥 ∫ 𝑒−2𝛼𝑦2

𝑑𝑦
+∞

−∞

∫ 𝑒−2𝛼𝑧2
𝑑𝑧

+∞

−∞

+∞

−∞

 

 

(for which we need the standard integral ∫ 𝑥2𝑒−𝑏𝑥2
𝑑𝑥

+∞

−∞
=

1

2𝑏
√

𝜋

𝑏
) 

 

 

Attraction (to nuclei) and repulsion (with other electrons) integrals are trickier because of the 

1/r terms, for which we need Fourier transform techniques. However, relatively simple closed 

analytical forms exist. The same is not true for Slater-type functions! 
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Practical choices of basis set. 

Despite their mathematical convenience, it remains true that GTOs provide a much worse 

approximation to atomic orbitals than STOs. The compromise is to use a linear combination 

of several GTOs to represent each atomic orbital rather than a single STO. For example, a 

triple-zeta basis set uses three GTOs to describe each atomic orbital. The basic philosophy 

is that it is easier to perform a large number of easy integrals than to perform a much small 

number of hard ones! 

 

 

 

 

If we vary the coefficients in the sum, we can get an orbital of arbitrary size.  

 

    
2 2 2

0.5* 0.25*

1 2 3

r r r
c e c e c e



11 

And we can introduce radial nodes by using negative coefficients (the choices below are 

arbitrary, simply designed to illustrate how you can create different radial distribution 

functions from the same set of gaussian functions.  

For example an STO-3G basis set uses 3 GTOs to represent each STO. Thus a calculation 

on H2O with an STO-3G basis would involve 21 basis functions (3 for each of O1s, 2s, 2px 

and H 1s (x2)). 

Very large basis sets are commonly used now, including: 

1) Double, triple, quadruple…. zeta forms: more than one exponent is used to 

describe a given orbital. Varying linear combinations allow radial extent of 

orbital to vary. e.g 6-31G 

2) Polarisation functions: basis functions with higher angular momentum (e.g. p-

symmetry functions on H, d-symmetry functions on B,C,N,O,F, f-symmetry 

functions on transition metals) e.g 6-31G* (recall the discussion of the role of d 

orbitals in e.g. SF6) 

3) Diffuse functions: very low zeta – important for accurate description of weakly 

bound electrons (anions, for example) e.g 6-31+G  

Choice of basis is typically one of the major decisions practising computational chemists 

need to make. 
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H2: explicit formulation of the Hamiltonian for a 2-electron system 

 

    
                     

     
 2 2 2

1 2 1 2

1 1 2 2 12 12

1 1 1 1 1 1 1 1 1ˆ ˆ ˆ
2 2 2

i i

i a b a b

H V H H
r r r r r r

 

 

Note 
1

Ĥ  and 
2

Ĥ  are identical to the 1-electron Hamiltonians for H2
+ 

 

if 
12

1

r
was ignored completely (i.e. assuming electrons don’t interact), this is simply the sum of 

two independent one-electron H2
+ Hamiltonians, and the problem is separable. The resulting 

energy and ground-state wavefunction would be 

 

1
2

g
E E       1 1 1 2

g g
   (a simple “Hartree product”) 

 

But we have established that a wavefunction of this type is not antisymmetric wrt exchange 

of electrons (unsurprisingly as we deliberately ignored the interaction between the electrons 

in deriving it!): we need to use a Slater determinant 

 

 
1 (1) 1 (1)1 1

1 1 1 (1)1 (2) 1 (2)1 (1)
1 (2) 1 (2)2 2

g g

g g g g g g

g g

 
     

 
      

Now we have an expression for   and an expression for Ĥ , we can compute the 

expectation value: 

  Ĥ E  

 

Step 1: Expand as a Slater determinant 

          
1 2

12

1 1ˆ ˆ ˆ1 (1)1 (2) 1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1)
2

g g g g g g g g
H E H H

r
         

  

  

  

  

1 2

12

1 2

12

1 2

12

1 2

12

1 1ˆ ˆ1 (1)1 (2) 1 (1)1 (2)
2

1 1ˆ ˆ1 (1)1 (2) 1 (2)1 (1)
2

1 1ˆ ˆ1 (2)1 (1) 1 (1)1 (2)
2

1 1ˆ ˆ1 (2)1 (1) 1 (2)1 (1)
2

g g g g

g g g g

g g g g

g g g g

E H H
r

H H
r

H H
r

H H
r

   

   

   

   
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Step 2: Expand terms of Ĥ to give 12 integrals, I1-12 

 

 

 



1 2

1 2

1 2

1

1 1ˆ ˆ1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2)
2 2

1 1ˆ ˆ1 (1)1 (2) 1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1)
2 2

1 1ˆ ˆ1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1) 1 (1)1 (2)
2 2

1 ˆ1 (2)1 (1) 1
2

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g

E H H

H H

H H

H

       

       

       

  

 

 

2

12 12

12 12

1 ˆ(2)1 (1) 1 (2)1 (1) 1 (2)1 (1)
2

1 1 1 1
1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (2)1 (1)

2 2

1 1 1 1
1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1) 1 (2)1 (1)

2 2

g g g g g g

g g g g g g g g

g g g g g g g g

H

r r

r r

     

       

       

 

 

Now look at each of I1-12 in turn: 

 

1-electron integrals, I1-8 

I1 = 
1 1

ˆ ˆ1 (1)1 (2) 1 (1)1 (2) 1 (1) 1 (1) 1 (2) 1 (2)
g g g g g g g g

H H         

(note 
1

Ĥ only acts on electron 1) 

 

Separating the spatial and spin components of the wavefunctions gives 

I1 =        1
ˆ1 (1) 1 (1) 1 1 1 (2) 1 (2) 2 2

g g g g
H         

   =              
1 g
E                  x 1                 x 1                   x 1         =

1 g
E   

 

Similarly I2 = 
2

ˆ1 (1)1 (2) 1 (1)1 (2)
g g g g

H    =
1 g
E   

I7 = 
1

ˆ1 (2)1 (1) 1 (2)1 (1)
g g g g

H    =
1 g
E   

I8 = 
2

ˆ1 (2)1 (1) 1 (2)1 (1)
g g g g

H    =
1 g
E   

 

I3 =     
1 1

ˆ ˆ1 (1)1 (2) 1 (2)1 (1) 1 (1) 1 (1) 1 (2) 1 (2)
g g g g g g g g

H H          

 =        1
ˆ1 (1) 1 (1) 1 1 1 (2) 1 (2) 2 2

g g g g
H         

 =              
1 g
E                  x 0                 x 1                   x 0         = 0 

(due to spin orthogonality) 

 

Similarly I4 = 
2

ˆ1 (1)1 (2) 1 (2)1 (1)
g g g g

H    =0 

I5 = 
1

ˆ1 (2)1 (1) 1 (1)1 (2)
g g g g

H    =0 

I6 = 
2

ˆ1 (2)1 (1) 1 (1)1 (2)
g g g g

H    =0 
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2-electron integrals (terms in 1/r12), I9-12 

I9 = 
12

1
1 (1)1 (2) 1 (1)1 (2)

g g g g
r

     

Separating spatial and spin components: 

=        
12

1
1 (1)1 (2) 1 (1)1 (2) 1 1 2 2

g g g g
r

         

=
12

1
1 (1)1 (2) 1 (1)1 (2)

g g g g
r

           x 1              x 1        
1 1g g
J    

This is the ‘Coulomb integral’ (note different use of the term ‘Coulomb integral’). 

Physically: the repulsion between two electrons in the same orbital, 1 g
  

 

Returning to the expansion: 

 I12 = 
1 1

12

1
1 (2)1 (1) 1 (2)1 (1)

g gg g g g
J

r
     = I9 

but  I10 = 
12

1
1 (1)1 (2) 1 (2)1 (1)

g g g g
r

      

=        
12

1
1 (1)1 (2) 1 (1)1 (2) 1 1 2 2

g g g g
r

         

=
12

1
1 (1)1 (2) 1 (1)1 (2)

g g g g
r

           x0                 x0        = 0 

Similarly I11 = 
12

1
1 (2)1 (1) 1 (1)1 (2) 0

g g g g
r

     

So  1 1 1 1 1 1

1
4 2 2

2 g g g g g g
E E J E J           

i.e. twice the energy of H2
+, plus an addition term 

1 1g g
J   for the electron-electron repulsion. 

 

Physicists’ and chemists’ notation 

A shorthand notation for the 2-electron integral 
12

1
1 (1)1 (2) 1 (1)1 (2)

g g g g
r

     is 

1 (1)1 (2) 1 (1)1 (2)
g g g g

      or more generally ij ij  where the 1/r12 term is implicit. This is 

called the physicists notation. Up to 4 spin orbitals can be involved, in which case the integral 

is denoted ij kl .  

It is often conceptually easier to collect all terms relating to a given electron on the same side 

of the 1/r12 term.  

 
12 12

1 1
1 (1)1 (2) 1 (1)1 (2) 1 (1)*1 (2)* 1 (1)1 (2)

g g g g g g g g
r r

         

 
12

1
1 (1)*1 (1) 1 (2)*1 (2) |

g g g g
ii jj

r
     This is called chemists’ notation. 

Note the use of a square bracket rather than a traditional ‘bra’/’ket’. This is because the 

complex conjugates have moved (complex conjugation is implicit in ‘ ’). 
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Excited states of H2 and the exchange integral, K. 

 

Let us perform the same analysis with the first triplet excited state of H2,  

 
1 (1) 1 (1)1 1

1 1 1 (1)1 (2) 1 (2)1 (1)
1 (2) 1 (2)2 2

g u

g u g u g u

g u

 
     

 
      

Expanding   and Ĥ again gives 12 integrals: 

 

 

 



1 2

1 2

1 2

1

1 1ˆ ˆ1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2)
2 2

1 1ˆ ˆ1 (1)1 (2) 1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1)
2 2

1 1ˆ ˆ1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1) 1 (1)1 (2)
2 2

1 ˆ1 (2)1 (1) 1
2

g u g u g u g u

g u g u g u g u

g u g u g u g u

g u

E H H

H H

H H

H

       

       

       

  

 

 

2

12 12

12 12

1 ˆ(2)1 (1) 1 (2)1 (1) 1 (2)1 (1)
2

1 1 1 1
1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (2)1 (1)

2 2

1 1 1 1
1 (2)1 (1) 1 (1)1 (2) 1 (2)1 (1) 1 (2)1 (1)

2 2

g u g u g u

g u g u g u g u

g u g u g u g u

H

r r

r r

     

       

       

 

 

I1 = 
1

ˆ1 (1)1 (2) 1 (1)1 (2)
g u g u

H    = I8 = 
2 1

ˆ1 (2)1 (1) 1 (2)1 (1)
gg u g u

H E      

I2 = 
2

ˆ1 (1)1 (2) 1 (1)1 (2)
g u g u

H    = I7 = 
1 1

ˆ1 (2)1 (1) 1 (2)1 (1)
ug u g u

H E      

I3,4,5,6 = 0 

I9 = 
12

1
1 (1)1 (2) 1 (1)1 (2)

g u g u
r

    = I12 = 0
1 1

12

1 (2)1 (1) 1 (2)1 (1)
g ug u g u

j
J

r
      

Physically: 
1 1g u
J   is the repulsion between an electron in 1 g

  and an electron in 1
u

  

 

thus far, all is exactly as before for the ground state, BUT 

 

I10 = 0

12

1 (1)1 (2) 1 (2)1 (1)
g u g u

j

r
    = I11 =

12

1
1 (2)1 (1) 1 (1)1 (2)

g u g u
r

     

=        
12

1
1 (1)1 (2) 1 (2)1 (1) 1 1 2 2

g u g u
r

                

=
12

1
1 (1)1 (2) 1 (2)1 (1)

g u g u
r

           x 1               x 1        ≠ 0    (no spin orthogonality) 


1 1

12

1
1 (1)1 (2) 1 (2)1 (1)

g ug u g u
K

r
      

So the I10 (and I11) integrals survive: they are known as exchange integrals, K – a purely 

quantum phenomenon. 
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Collecting terms:   
1 1 1 1 1 1g u g u g u

E E E J K          

J and K are both positive (to be justified later), so K can be thought of as offsetting some of 

the electron-electron repulsion captured in J: electrons with parallel spin repel each less than 

electrons with opposite spins.  

 

Note Ĥ  does not operate on spin degrees of freedom. Thus influence of spin on 

energy is exerted indirectly via the spatial constraints imposed by the Pauli principle  

 

       when  

 
 
What are the signs and magnitudes of J and K? Consider the orbitals:  
  

      
  1

g
      1

u
  

(red is positive, blue is negative) 

 

Now consider the products of orbitals involved in the expressions for J and K. 

 

 

  
     1 (1)1 (1)

g g
       1 (2)1 (2)

u u
   

   

> 0 everywhere  > 0 everywhere  1/r12 > 0 everywhere  

 

so:  J is the sum of terms that are all positive, so J MUST be positive  

(no surprise - it is a repulsion, after all!). 

    3 1
1 (1)1 (2) 1 (2)1 (1) 0

2
g u g u

    
1 2
r r


12

1
1 (1)1 (2) 1 (1)1 (2)

g u g u
J

r
   
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What about K? 

 

 

 

  

 

1 (1)1 (1)
g u

               1 (2)1 (2)
u g

   

 

The products can be either positive or negative, depending on position in space. 

If both electrons on same side of the node:   
12

1
1 (1)1 (2) 1 (2)1 (1) 0

g u g u
r

     

If electrons on opposite sides of the node: 
12

1
1 (1)1 (2) 1 (2)1 (1) 0

g u g u
r

     

K is the summation of some terms that are positive and some terms that are negative, so we 

cannot, a priori, predict its sign in the same way as we can for J. 

 

However, if the electrons are on the same side of the node, r12 is necessarily small, so  

12

1
1 (1)1 (2) 1 (2)1 (1)

g u g u
r

     is large (and positive as established above). 

Whereas if the electrons are on opposite sides of the node, r12 is necessarily large(r), so  

12

1
1 (1)1 (2) 1 (2)1 (1)

g u g u
r

     is small (and negative as established above). 

Hence K is positive, but generally smaller than J (in practice ~25% smaller in cases where 

there are no radial such as first-row atoms (C, N, O, F), first-row TMs and lanthanides) 

 

Conclusion: J > K > 0 (hence parallel spins favoured)  

and note that we can trace this fact all the way back to the fact that the sign in the expansion 

of the wavefunction is negative:   

   
1
1 (1)1 (2) 1 (2)1 (1)

2
g g g g

     

If it were positive, parallel-spin electrons would be disfavoured! 

 

Generalised energy expressions for larger molecules. 

We can generalise the expression for the energy to  
,

2 2
i ij ij

i i j

E E J K    for any closed-

shell molecule, where the summation runs over doubly occupied orbitals 


12

1
1 (1)1 (2) 1 (2)1 (1)

g u g u
K

r
   
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A simple ‘algorithm’ that works for any atom/molecule (open or closed shell): 

 

The total energy = sum of the one-electron energies + 1J per pairwise interaction between 

two electrons -1K per pairwise interaction between two electrons with parallel spins. 

 

For He2:  1 1 1 1 1 1 1 1 1 1
2 2 4 2

g u g g g u u u g u
E E E J J J K                

 
 
 
How important is K? 
 

We have established that K offsets some of the e-e repulsion in J, how much is the ‘offset’ 

worth? Let’s look at 2 limiting cases, both with 4 electrons: He2 and Be  

 

1) He2: when the electrons (g and u) occupy similar regions of space 
 

Comment: expanding the ground state of H2 using this expression gives 

1 1 1 1 1
2 2

g g g g g
E E J K       which looks different from expression above, but note 

 
1 1 1 1

12

1
1 (1)1 (2) 1 (2)1 (1)

g g g gg g g g
K J

r
        

or in general 
ii ii
K J  

so     
1 1 1 1 1 1 1 1

2 2 2
g g g g g g g g

E E J K E J        as on page 12 
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K is very large – it reduces the Coulomb repulsion by a factor of 2/3 

 

 
2) Be: effectively the same problem (4 electrons in 2 orbitals), but now the electrons (1s 

and 2s) occupy very different regions of space 
 

 

 

K is very small – it only offsets ~ 5% of the Coulomb repulsion.  

Useful rule of thumb for transition metals: 𝐾 ≅ 0.25 × 𝐽 (electrons are in similar regions of 

space).  
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Expansion of J and K in terms of atomic basis: 

 

We can expand  1 1

1
1

2(1 )
g sa sb

S
   


  1 1

1
1

2(1 )
u sa sb

S
   


 

 

 
1 1

12

1
1 (1)1 (2) 1 (1)1 (2)

g g g g g g
J

r
       

 

 
       

 

   



 

 

 

 

2

12

2

12 12

12 12

12 12

1 1
(1) (2) (2) (1)

4 1

1 1 1
(1) (2) (2) (1) (1) (2) (2) (1)

4 1

1 1
(1) (2) (2) (1) (1) (2) (2) (1)

1 1
(1) (2) (2) (1) (1) (2) (2) (1

a b a b a b a b

a a a a a a a b

a a b a a a b b

a b a a a b a b

rS

r rS

r r

r r

       

       

       

       

 

 

 

 

12 12

12 12

12 12

12 12

)

1 1
(1) (2) (2) (1) (1) (2) (2) (1)

1 1
(1) (2) (2) (1) (1) (2) (2) (1)

1 1
(1) (2) (2) (1) (1) (2) (2) (1)

1 1
(1) (2) (2) (1) (1) (2) (2) (1

a b b a a b b b

b a a a b a a b

b a b a b a b b

b b a a b b a b

r r

r r

r r

r r

       

       

       

       

 
12 12

)

1 1
(1) (2) (2) (1) (1) (2) (2) (1) ]
b b b a b b b b

r r
       

 

 

The 16 integrals above, I1-16, separate into four distinct types: 

 

12

1
(1) (2) (2) (1)
a a a a

r
      electrons 1 and 2 both on a or both on b (x2) (I1 and I16) 

12

1
(1) (2) (2) (1)
a b b a

r
      electron 1 on a, electron 2 on b or vice versa (x2) (I7, I10) 

12

1
(1) (2) (2) (1)
a b a b

r
      overlap densities of electrons 1 and 2 (x4) (I4,6,11,12) 

12

1
(1) (2) (2) (1)
a a a b

r
     overlap density of electron 1 with electron 2 on a or on b, 

or vice versa (x8) (I2,3,5,8,9,13,14,15) 

 

(relatively!) simple analytical solutions are available if you use a Gaussian basis set. Much 

harder solutions are available for Slater orbitals (see MQM P292), but very soon become 

intractable for higher angular momentum basis functions (p, d, f orbitals). 
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Note that in principle we can expand a molecular orbital using as many functions on as many 

atoms as we like:  

 

 a b c d
N        , for example (see ‘basis sets’) 

 

If we do so, the number of integrals required increases rapidly (the number of 2-electron 

integrals scales as N4 where N is the number of basis functions). Moreover, the 1- and 2-

electron integrals (H , J  and K ) can involve atomic functions on up to four different atoms, 

a, b, c and d: 

e.g.   
12

1
(1) (2) (1) (2)
a b c d

ij kl
r

     

The 4-centre-2-electron integrals are numerous and very time-consuming to evaluate  

 

What have we achieved so far? 

 

We have illustrated the machinery that allows the expression   Ĥ E to be evaluated if 

we express the total wavefunction as an antisymmetrised product: 

 

  
1 (1) 1 (1)1

1 1
1 (2) 1 (2)2

g g

g g

g g

 
 

 
 

and, critically, we know what the individual orbitals (1
g

 in this case) look like. In the case of 

minimal basis set H2, symmetry is all we need (1
g

 is the appropriately normalised in-phase 

combination of the 1s orbitals) but what if we don’t know, a priori, what the orbitals look like. 

In HHe+, for example, we know that the occupied orbital is an in-phase combination of 1s 

orbitals and, qualitatively, we anticipate that the bonding orbital will be polarised towards the 

more electronegative He atom. But how polarised? 90%? 60%? The next section deals with 

Hartree-Fock theory, which provides a route, via the variation theorem, to find the optimum 

linear combination of atomic orbitals in cases where symmetry is not enough (i.e. the vast 

majority of problems!) 

Comment: expanding   gives 4 terms 

  expanding Ĥ splits each of these 4 into 3 components  

(2 x 1-electron + 1 x 2-electron), and the 1-electron terms further split into 1 

kinetic energy and two electron-nucleus integrals. 

expanding g
 in terms of two atomic basis functions splits each of the each 

of the 1-e integrals into 4 components and each of the 2-e integrals terms 

into 16 components. 

= a lot of integrals! 
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Hartree-Fock theory  

We have an expression for the total energy of a closed-shell molecule: 

 
,

2 2
i ij ij

i i j

E E J K     

where 
i
E represents the interaction of an isolated electron with the nuclei. The 3-body 

problem (2 electrons + a fixed (H+)2 unit) cannot be solved analytically because of the 

repulsion between the electrons. 

 

Using the orbital approximation (i.e. assuming that each electron moves in an averaged 

potential defined by the nuclei and all other electrons - the ‘mean field’) we can express the 

ground-state wavefunction of H2 as a Slater determinant: 

1 (1) 1 (1)1
1 1

1 (2) 1 (2)2

g g

g g

g g

 
 

 
     

But, in order to define the average field due to electron 1, you need to know its wavefunction 

(i.e. the form of the 1 g
 orbital), and likewise for electron 2. But what is the optimum form of 

the 1 g
 orbital? (ans: we don’t know yet, but certainly not the same as it was in H2

+!). 

We need to adopt an iterative approach - the ‘self-consistent field’. 

 

The formal derivation of the HF equations involves finding the condition under which E , the 

total energy, is a minimum, subject to the constraint that the orbitals remain orthonormal, 

i j ij
    (the process involves the use of Lagrange multipliers – see box and MQM Ch7 

further info for a full derivation).  

 

 

When we do this, we arrive at the Hartree-Fock equations, 

 

ˆ
i i i

F     

where the Fock operator, ˆ
i
F , is defined as       ˆˆ ˆ ˆ ˆ ˆ2

j j

j j

F H J K H G  

𝜕(𝑓 − 𝜆𝑔)

𝑑𝑥
= 6𝑥 − 𝜆 = 0                  

𝜕(𝑓 − 𝜆𝑔)

𝑑𝑦
= −4𝑦 − 𝜆 = 0 

Lagrange multipliers: Finding an extremum subject to a constraint:  

 

Find the turning point of  2 2
3 2f x y subject to the constraint that   2x y  

 

Soln: define  g x y and   so      2 2
3 2f g x y x y   

  is the ‘Lagrange multiplier’ 

 

Ans:  4x ,  6y ,  24  n.b.      2 2
( 4,6) 3 2 24f x y   
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i
  is the Hartree Fock orbital energy (the Lagrange multiplier and also the eigenvalue) 

Ĥ  is the one-electron term     2

1

1 1

1 1 1ˆ
2

a b

H
r r

 

ˆ
j
J  and ˆ

j
K are the Coulomb and Exchange operators, respectively 

 

        
 

  
 
 2

12

1ˆ 1 2 2 1
j i j j i
J dv

r
            

 
  
 
 2

12

1ˆ 1 2 2 1
j i j i j

K dv
r

     

 

The Coulomb operator defines the influence of the charge cloud    2 2
j j

  on electron I etc. 

The exchange operator defines the modification of this repulsion by spin correlation. 

 

Thus     2
i i ij ij

j

E J K  

 

Note the difference between 
i
E  and 

i
 :  

i
E  is the interaction between the electron and the nuclei in the absence of the other electron 

(i.e. exactly as in H2
+). 

i
  is the Hartree Fock orbital energy, which represents the energy of 

the electron in the combined field of the nuclei and the other electron.  

 

We now have a system of linear equations where the Fock operator (a one-electron 

operator) defines the average field due to the nuclei (contained in Ĥ ) and the remaining 

electrons (contained in Ĵ  and K̂  operators).  

 

What do the one-electron energies, 
i

 , mean?  

Each orbital energy contains the effects of repulsions by all other electrons, so the sum over 

all occupied orbital energies,
i

i

 , double counts the repulsions. Therefore, to calculate the 

total energy we have to correct for this by subtracting the e-e repulsion. 

 

 
,

2 2
i ij ij

i i j

E J K     where the sum is over doubly-occupied orbitals. 

Check this works for H2:  

 

1 1 1 1 1
2 2

g g g g g
E J K        

but recall that  
1 1 1 1g g g g
J K     

 

and that  
1 1 1 1g g g g

E J       

 

                
1 1 1 1 1 1 1 1 1 1

2 2 2
g g g g g g g g g g

E E J J J E J (as previous). 
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Koopmans’ theorem: “The ionisation energy is the negative of the Hartree Fock orbital 

energy”: 
i i
I    

 

Why?                  
         

2 2 2 1 1 1 1 1 1 1 1
2

g g g g g g g gH
I E H E H E E J E J  

Another way to see this is to note that when we remove an electron we lose the attraction to 

the nuclei (
1 g
E  ) and also 1 unit of Coulomb repulsion – precisely the components of 

1 g
  

 

What do the energies of the vacant orbitals mean? Consider the 
u

  orbital in H2. 

 

      1 1 1 1 1 1 1
2 2

u u u g u g uij ij

i

E J K E J K        

 

i.e. it experiences repulsions from both electrons (unlike g which only experiences repulsion 

from one electron (the other being ‘itself’). So beware – it is dangerous to compare occupied 

and virtual HF orbital energies. 

 

The energy of a virtual orbital in HF theory corresponds to the negative of the electron affinity 

of the atom/molecule. 

 

       

 

        

     

2 2 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

2 2 2

2

g g g g u g g g u g u

u g u g u u

H
EA E H E H E J E E J J K

E J K

          

     
 

 

Hartree-Fock-Roothaan (HFR) Equations: 

These are the HF equations implemented using the LCAO approximation 
n n

n

c   

 ˆ
n n i n n

n n

F c c    

Multiply by 
m

 and integrating gives  ˆ
n m n i m n n

n n

c F c      

  0
n mn i mn

n

c F S   which have non-trivial solutions where 0
mn i mn
F S   

(note similarities to secular equations derived in Lecture 1 – more on solving these in the last 

2 lectures). 

 

Reiterate: in order to determine 
n
c  by solving the HFR equations, we need to be able to 

calculate the matrix elements 
mn
F  (including Coulomb and exchange integrals), which in turn 

means that we need to already know 
n
c ! Hence an iterative solution required: 
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In the context of HF theory, the flow diagram is as follows: 

 

 

An example: H2 at the equilibrium separation, R = 1.38543 a0. 

 

Expand the MOs in the form 
a a b b
c c     where 

a
 , 

b
  are 1s orbitals centred on the H 

atoms. We will use a normalised ‘Slater-type’ orbital of the form
1

r

s
Ne

  (see ‘basis 

functions’) with exponent 1.19302  (chosen because it is the optimum value at this 

separation, but the choice doesn’t matter for our purposes here). 

The general expression for the HFR equations   0
n mn i mn

n

c F S   give us 

 

   

   

0

0

aa aa a ab ab b

ab ab a bb bb b

F S c F S c

F S c F S c

 

 

   

   
  and  

 


 
0

aa aa ab ab

ab ab bb bb

F S F S

F S F S

 

 
 

 

numerical values for matrix elements ( S ,H ,G  in Hartree units) as function of ,a b
c  

 

 1
aa bb
S S  

0.68242
ab
S   

 

 

 

      

      

      

2 2

2 2

2 2

1.13295 0.74564 0.89359 0.81335

1.13295 0.81335 0.89359 0.74564

0.97475 0.44675 0.36498 0.44675

aa aa aa a a b b

bb bb bb a a b b

ab ab ab a a b b

F H G c c c c au

F H G c c c c au

F H G c c c c au

 

(the numbers come from well-established formulae: the details are not important but are 

contained in Szabo and Ostlund) 

 

All we need to start the iteration is a guess for 
a
c  and 

b
c . Clearly in this case we could 

guess from symmetry considerations that 
a b
c c  for the ground state, but to illustrate the 

process, let’s start with an obviously incorrect guess:  
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Step 1: guess   2
a b
c c    2a

b

c

c
 

Step 2: normalise 2
b a b b
c c     

        

  

  


 


2 2

2 2 1

5 4 1

1
0.35968

4 5

0.71936

b a b b b a b b

b b ab

b

ab

a

c c c c d

c c S

c
S

c

 

 

Step 3: calculate matrix elements using formulae for 
aa
F ,

ab
F , 

bb
F  above 

 

             
2 2

1.13295 0.74564 0.71936 0.89359 0.71936 0.35968 0.81335 0.35968
aa aa aa
F H G au

 0.4107au  

 

   


   

0.4107 0.5913 0.6824
0

0.5913 0.6824 0.3844

 

 
 

 

Step 4: solve   
1

0.58804au  (lowest eigenvalue) 

 

Step 5: Converged? (i.e. is the value of 1 the same (to within a defined threshold) as the 

previous value).  Clearly as this is the first iteration we have nothing to compare to, and so 

the answer is no! 

 

Otherwise 

Step 6: solve 

 
   

   

0

0

aa aa a ab ab b

ab ab a bb bb b

F S c F S c

F S c F S c

 

 

   

   
    for ,

a b
c c  with 

1
0.58804au     

 

   0.1773 0.1990 0
a b
c c  

 1.0715a

b

c

c  

go round the cycle again……….. 

 

Step 2: normalise 
2 2
2 1

0.56391

0.52627

a a b b

a

b

c c c S c

c

c

   





 

etc. etc. etc. etc.    

 a
c  

a
c  

aa
F  

ab
F  

bb
F  

1
  

2
  

Initial 0.71937 0.35968 -0.4107 -0.5913 -0.3844   

1
st

 iter 0.56391 0.52627 -0.4054 -0.6001 -0.4026 -0.5880 0.6105 

2
nd

 iter 0.54711 0.54319 -0.4042 -0.6007 -0.4039 -0.5972 0.6191 

3
rd

 iter 0.54536 0.54495 -0.4041 -0.6007 -0.4041 -0.5973 0.6192 

4
th

 iter 0.54517 0.54513 -0.4041 -0.6007 -0.4041 -0.5973 0.6192 

5
th

 iter 0.54515 0.54515 -0.4041 -0.6007 -0.4041 -0.5973 0.6192 

Convergence history 
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The concept of effective nuclear charge: the 4s vs 3d controversy. 

For a poly-electronic electron, the full Hamiltonian for a single electron is: 

 

 

 

 

But we can simplify this by absorbing the (repulsive) electron-electron interactions into the 

‘effective nuclear charge”, which is reduced from its value for the real atom: 

 

 

 

 

We say that the reference electron (i) is ‘shielded’ from the real nuclear charge Z by the 

presence of the other electrons, and if we choose an appropriate value of Zeff, we can 

recover the eigenvalues and eigenfunctions of the full Hamiltonian. There are many sets of 

empirical rules used to define Zeff (Slater, Clementi etc). 

 

So we really ‘hide’ the electron-electron repulsions by rolling then into a reduced positive 

charge at the nucleus: the ‘effective nuclear charge’. This was absolutely necessary when 

the concept was first thought of (ca 1930), because accurate computation of the repulsions 

was out of the question. Now they are routine.   

 

Qu 1: The 4s/3d ordering debate: why is K 4s1 3d0 and not 3d1 4s0?  

Standard answer: the 4s orbital penetrates through the core electrons, and so ‘experiences a 

greater effective nuclear charge’. 

 

Qu 2: why is Ti3+ 3d1 4s0 and not 4s1 3d0? 

Standard answer: don’t know. 

 

Let us consider the 7S states of the isoelectronic series Cr, Mn+, Fe2+, where the 4s and 3d 

orbitals are all singly occupied (thereby avoiding the problem of comparing occupied and 

virtual orbital energies). 

 

 

 

 

 

 

 



    2

,

1 1

2

n

el i

j ii ij

Z
H

r r

   2
,

1

2

eff

el i

i

Z
H

r
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Components of the self-consistent energies of the 4s and 3d orbitals of the 7S states of Cr, 

Mn+ and Fe2+ (in au) at the HF/VTZ level. 

 𝑻 𝑽𝒏𝒆 𝑽𝒆𝒆 𝑬𝒕𝒐𝒕 

     

Cr 

4s 0.63 -8.29 7.44 -0.22 

3d 4.91 -24.13 18.86 -0.36 

     

Mn
+
 

4s 1.13 -10.96 9.28 -0.54 

3d 6.50 -29.26 21.84 -0.93 

     

Fe
2+

 

4s 1.71 -13.52 10.86 -0.95 

3d 8.13 -34.25 24.47 -1.65 

 

 

 

Components of the electron-electron repulsion in the 7S state of Cr.  
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The correlation problem and post-HF methods. 

We have established from MO theory that the ground state wavefunction for H2 can be 

represented as: 
1 (1) 1 (1)1

1 1
1 (2) 1 (2)2

g g

MO g g

g g

 
 

 
    

and we used the HFR equations to find the optimum form of the orbital 1 g
 in terms of the 

LCAO expansion. The potential energy surface shown below (‘HF’ = Hartree Fock) indicates 

that this reproduces the equilibrium geometry reasonably well, but fails to reproduce the 

dissociation energy: the HF energy of H2 at the dissociation limit is ~0.34 au higher than that 

of two isolated H atoms (set as zero in the figure below). 

 

 

 

To see the origin of the problem, expand the spatial part of the wavefunction: 

 

 
         

 
                

    


   


1
1 1 1 1 2 2

2 1

1
1 2 1 2 1 2 1 2

2 1

spatial g g a b a b

a a b b a b b a

S

S

     

       

 

 

= Ha
–….Hb

+ + Ha
+….Hb

- + Ha

.
….Hb

.
  + Ha

.
….Hb

.
 

 

i.e. an equal mixture of covalent (Ha

.
….Hb

.
) and ionic (Ha

+….Hb
-) resonance structures. This 

is reasonable at the equilibrium geometry, where overlap is large, but unrealistic at the 

dissociation limit, where two neutral H atoms will be strongly favoured over H+ + H-.  
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This problem is a consequence of the central field approximation, where one electron is 

influenced only by the average position of the other: the result is that situations where both 

electrons are very close to each other at any given instant are more probable than they 

should be: we say that the motion of the two electrons is not correlated. 

Another way to see this is to note that if the two electrons share the same spatial 

wavefunction, then wherever the most probable position to find electron 1 is, it is also the 

most probable position to find electron 2, and that doesn’t make much sense! 

 

Configuration interaction 

The problems at the dissociation limit can be reduced by using configuration interaction – 

adding in extra configurations to the wavefunction.  

In this case we will mix the  
2

1
g

 configuration with the doubly excited configuration  
2

1
u

  

1 2
1 1 1 1

CI g g u u
c c       

 

Expanding the spatial part of the second term in the same way as above gives 

 
         

 
                

    


   


1
1 1 1 1 2 2

2 1

1
1 2 1 2 1 2 1 2

2 1

spatial u u a b a b

a a b b a b b a

S

S

     

       

 

 

Thus 1 2
1 1 1 1

CI g g u u
c c       

   
        

   
        

1 2

1 2

1 2 1 2
2 1 2 1

1 2 1 2
2 1 2 1

spatial a a b b

a b b a

c c

S S

c c

S S

   

   

 
       

 
      

 

Thus an appropriate choice of coefficients (specifically when 
 
 

1

2

1

1

Sc

c S


 


) causes the ionic 

terms to vanish completely. The ratio 2

1

c

c
 varies from 0 at equilibrium to -1 at the dissociation 

limit. 

The correlation energy is defined as the difference between the energy obtained from this 

wavefunction and the Hartree Fock energy. Notice that in order to get a better energy, we 

have had to abandon the idea that electrons live in orbitals – this is a big leap! 

 

In practice, CI is performed by constructing linear combinations of ground and excited 

determinants based on the Hartree-Fock orbitals. The optimum linear combination 

 

i i

i

C    

where 
i

 are now determinants, not orbitals, is then found using the linear variation method.  
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Example: for H2:     
1 1 2 2
C C  

  
1

1 (1) 1 (1)1
1 1

1 (2) 1 (2)2

g g

g g

g g

 
 

 
   

2

1 (1) 1 (1)1
1 1

1 (2) 1 (2)2

u u

u u

u u

 
 

 
 

and the secular determinant we need to solve is: 

 

 

 

 

We have already dealt with the matrix element  
1 1
H  - it is the ground-state energy of 

H2: 
1 1 1

2
g g g

E J    

Similarly, we can show that  

 

   
2 2 1 1 1

ˆ 2
u u u

H E J     and   
1 2 1 1

ˆ
g u

H K    (see problems sheet) 

 

So the total energy including CI is the lowest root of 

 

 

 

 

This is the dashed curve in the Figure on P 29 

 

For larger molecules, many millions or even billions of excited determinants may be needed 

for good accuracy. The methods (acronyms CI, CID, CISD(T), CASSCF…) can be very 

accurate but very expensive.  

 

  

 

 

 


 

1 1 1 1 1

1 1 1 1 1

2
0

2

g g g g u

g u u u u

E J E K

K E J E

    

    

    


    

1 1 2 1

1 2 2 2

ˆ ˆ
0

ˆ ˆ

H E H

H H E
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Density Functional Theory 

A fundamentally different approach, based on the density, , (a 3-dimensional variable) 

rather than the wavefunction (a 3n-dimensional entity, where n is the number of electrons). 

Based on Theorems by Hohenberg and Kohn (Kohn, Nobel prize 1998): 

a) The energy is uniquely defined by the electron density, . 

b) The ground-state energy can be obtained variationally: the density that minimises 

the total energy is the exact ground-state density. 



In principle, orbitals are not needed for DFT, but in practice it is very difficult to calculate the 

KE term ( 21

2
) accurately using the density alone. Kohn and Sham developed a 

methodology wherein the electron density is modelled as a system of fictitious non-

interacting electrons which occupy the ‘Kohn-Sham orbitals’) and reproduce the real density. 

This leads to a set of 1-electron Kohn-Sham equations very similar in structure to the Hartree 

Fock equations: 

 
     
 

21ˆ
2

KS i eff i i i
H V             

eff xc
V V r J r V r  

   ,V r J r are the electron-nuclear and coulomb potentials, precisely as in HF theory. 

 xc
V r is the so-called ‘exchange-correlation’ potential, which determines both the 

exchange and correlation effects. 

 

Notice that the influence of correlation is introduced through the Hamiltonian, not by 

expanding the wavefunction beyond the HF single determinant. Therefore it is appealing in 

terms of cost. 

 

Problem:  xc
V r is unknown, and there are hundreds (probably thousands now) of 

different approximations to it (BP86, BLYP, HCTH, B3LYP, PBE, rev-PBE........ –  the so-

called ‘functional zoo’). More than 20 years after it was first proposed, the most popular 

remains B3LYP (‘everybody’s favourite functional’). 
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Semi-empirical theory 

The number of 2-electron integrals in a HF expansion scales as N4 where N is the number of 

basis functions. Thus reducing the size of the basis set and avoiding the calculation of some 

of the integrals is clearly an advantageous strategy. 

 

Hückel theory  (see Valence lectures 7/8) 

The ultimate extension of semi-empirical theory - the philosophy is to eliminate the 

computation of matrix elements entirely by parameterisation at the Fock matrix element 

level. Thus it is not iterative.  

 

1) Assume complete separation of  systems (contrast EHT, later, where all 

valence orbitals are included) 

2) Assumes independent electrons: i.e.     
1 2 3 4

.....  , a simple Hartree product, 

and 
1 2 3 4

....E E E E E      

3) 
11

H    the Coulomb integral 

4) 
12

H    (the resonance integral) if 1 and 2 are nearest neighbours, 0 

otherwise  

n.b  and  usually given symbolic values rather than assigned to real numbers. 

5) 
12

0S    this makes the overlap matrix equal to the identity, and simplifies 

the secular equations from Ĥc ScE  to Ĥc cE . In a typical  system 
12

0.2S  , 

so this seems a radical approximation. However it has little impact on the final 

solutions (see problem 2.2). 

 

Note geometry (i.e. bond lengths) is not considered at any point – only connectivity. 

 

Example:  allyl radical 

 

 

0

0

0

E

E

E

 

  

 



 



 

 

Define 
E

x




 
  
 

3

1 0

1 1 2 0

0 1

x

x x x

x

     

 

0, 2x    
2

0x E     
1,3

2 2x E         

note energy level subscripts 1-3 chosen for future convenience. 
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Eigenvectors: sub 
1 3
E


 into secular equations 

2
E   

 

 

1 2 3 3 1

1 2 2

0

0 0

c c c c c

c c c

   

  

       


     

    
2 1 3

1

2
    (after normalisation) 

 

1
2E     

 

 

1 2 2 1

1 1 3 3 1

2 0 2

2 2 0

c c c c

c c c c c

   

    

     



       


    
1 1 2 3

1
2

2
     

 

3
2E     

 

 

1 2 2 1

1 1 3 3 1

2 0 2

2 2 0

c c c c

c c c c c

   

    

      



       


    
3 1 2 3

1
2

2
     

 

 
Singly occupied orbital is 

2
E : the unpaired electron lies exclusively on the outer carbons. 
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Extended Hückel theory 

As with Hückel theory, the computation of matrix elements is avoided entirely by 

parameterisation of the Fock matrix elements: again not iterative.  

But no assumptions are made about  separability: all valence electrons included.  

Unlike Hückel theory, geometry determines overlaps, which are calculated explicitly 

(clearly ignoring  overlap is not reasonable!).  

Basis of method 

 

1) Assumes independent electrons:     
1 2 3 4

.....  and 
1 2 3 4

....E E E E E      

2) ij
S  computed as in Hartree Fock theory, using a minimal basis of Slater-type 

orbitals. If you want to see the details of how this is done, look at the python script 

EH.py in the course support materials. 

3) 
ii i

H I   The ionisation energy of an electron in the appropriate orbital in the 

valence configuration (e.g. sp3 for a tetrahedral carbon). In practice this is usually 

taken as the weighted average of 2s and 2p electrons in C, but the choice is not 

critical. 

4) 
 


2

ii jj

ij ij

H H
H KS  1.75K   Wolfsberg-Helmholtz formula 

(1.75 reproduces rotational barrier for ethane, but again choice not critical) 

 

Justification: interaction will increase with overlap, and with the energies of the 

component orbitals (for a fixed overlap). 

 

n.b. early versions used the simpler ij ij
H KS  

 

5) Solve matrix equation Hc ScE  

comment: In both Hückel and extended Hückel methods we assume the  

electrons move independently – i.e. there is no explicit electron-electron  

repulsion term, and so a simple Hartree product,      
1 2 3 4

.....  is sufficient.  

It is perhaps surprising that this is even remotely successful, given the lengths  

we go to in ab initio theories to compute J  and K , and then in CI or DFT  

to include correlation. The answer is that the use of parameters based on  

experiment means that the effects of electron-electron repulsion are implicitly  

included – sometimes called ‘Nature’s correlation’. 
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Example: CH4 valence orbitals: C2s, C2px,y,z H1s 

 

 

 

Work flow: 1) Construct S  using geometry and form of basis functions 

2) Insert diagonal elements 
ii

H  (usually tabulated) into H  

3) Calculate off-diagonal elements ij
H using W-H formula. 

4) Construct secular determinant and solve for E  

5) Solve for 
n
c  

 

Slater exponents: C2s = C2p = 1.625 H1s = 1.20, C-H = 1.09 Å 

(this information is required to construct overlap matrix using similar procedure to that for 

H2).  

1) Overlap matrix, S  

 

 C2s C2pz C2px C2py H1s(1) H1s(2) H1s(3) H1s(4) 

C2s 1 0 0 0 0.5183 0.5183 0.5183 0.5183 

C2pz 0 1 0 0 0.2819 0.2819 -0.2819 -0.2819 

C2px 0 0 1 0 -0.2819 0.2819 0.2819 -0.2819 

C2py 0 0 0 1 0.2819 -0.2819 0.2819 -0.2819 

H1s(1) 0.5183 0.2819 -0.2819 0.2819 1 0.1844 0.1844 0.1844 

H1s(2) 0.5183 0.2819 0.2819 -0.2819 0.1844 1 0.1844 0.1844 

H1s(3) 0.5183 -0.2819 0.2819 0.2819 0.1844 0.1844 1 0.1844 

H1s(4) 0.5183 -0.2819 -0.2819 -0.2819 0.1844 0.1844 0.1844 1 

 

2) Parameters: 

 

 

 

2 2

2 2

1 1

19.44

10.67

13.60

s s

p p

s s

C C

C C

H H

H eV

H eV

H eV

  

 

3) 

 
   

 
   

 
   


     


      


     

2 1

2 1

1 1

1
1.75 0.5833 19.44 13.6 14.98

2 2

1
1.75 0.2819 10.67 13.6 5.99

2 2

1
1.75 0.1844 13.6 13.6 4.39

2 2

s s

p s

s s

ii jj

C H ij

ii jj

C H ij

ii jj

H H ij

H H
H KS eV

H H
H KS eV

H H
H KS eV
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Hamiltonian matrix, H  

 

 C2s C2pz C2px C2py H1s(1) H1s(2) H1s(3) H1s(4) 

C2s -19.44 0 0 0 -14.98 -14.98 -14.98 -14.98 

C2pz 0 -10.67 0 0 -5.99 -5.99 5.99 5.99 

C2px 0 0 -10.67 0 5.99 -5.99 -5.99 5.99 

C2py 0 0 0 -10.67 -5.99 5.99 -5.99 5.99 

H1s(1) -14.98 -5.99 5.99 -5.99 -13.6 -4.39 -4.39 -4.39 

H1s(2) -14.98 -5.99 -5.99 5.99 -4.39 -13.6 -4.39 -4.39 

H1s(3) -14.98 5.99 -5.99 -5.99 -4.39 -4.39 -13.6 -4.39 

H1s(4) -14.98 5.99 5.99 5.99 -4.39 -4.39 -4.39 -13.6 

 

 

        

 

 

 

 

Jargon busting: ‘Diagonalising the matrix’: 

 

The secular equations can be expressed in matrix form: 

 

1 2 1 2 1

1 2 1 2 2

0

0

aa ab a a aa ab a a

ab bb b a ab bb b a

H H c c S S c c E

H H c c S S c c E

      
      

      
 

 

Hc ScE  a generalised eigenvalue problem (in a simple eigenvalue problem the overlap 

matrix is the identity) 

 

When solving the Hückel and EH problems ‘by hand’, we would solve the secular determinant 

for E, then sub back in to the secular equations to determine the eigenfunctions (coefficients) 

(as in the allyl radical example above). The matrix of these coefficients, c , has the property 

that †
c Hc is diagonal, with diagonal elements equal to the eigenvalues, E. 

Given the matrices H  and S , it then turns out to be easier (computationally) to determine the  

matrix c  that makes †
c Hc  diagonal than it is to expand the determinant itself. Thus we find the 

coefficients first and these give the energies, rather than vice versa. We use the expression 

‘diagonalising the matrix’ – in effect this just means “finding the eigenvalues and eigenvectors”. 
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H-ES 

 

 

 

 

 

 

 

 

 

 

 

5) Results for CH4 

 

orbital 1 2 3 4 5 6 7 8 

 Eigenvalues (energies) 

E -23.21 -14.93 -14.93 -14.93 6.06 6.06 6.06 34.0 

Occup 2 2 2 2 0 0 0 0 

 Eigenfunctions (MOs) 

C2s 0.58 0 0 0 0 0 0 1.70 

C2pz 0 -0.12 0.48 0.20 0.25 -0.31 1.09 0 

C2px 0 -0.28 0.12 -0.44 -0.92 0.60 0.38 0 

C2py 0 0.44 0.20 -0.23 -0.66 -0.95 -0.12 0 

H1s(1) 0.19 0.17 -0.10 -0.52 1.0 0.02 0.45 -0.69 

H1s(2) 0.19 0.36 0.34 0.25 -0.28 1.01 0.33 -0.69 

H1s(3) 0.19 -0.50 0.24 0.0 0.0 -0.67 -0.86 -0.69 

H1s(4) 0.19 -0.03 -0.48 0.28 -0.73 0.36 0.74 -0.69 

 C2s C2pz C2px C2py H1s(1) H1s(2) H1s(3) H1s(4) 

C2s -19.44-E 0 0 0 -14.98-0.52E -14.98-0.52E -14.98-0.52E -14.98-0.52E 

C2pz 0 -10.67-E 0 0 -5.99-0.28E -5.99-0.28E 5.99+0.28E 5.99+0.28E 

C2px 0 0 -10.67-E 0 5.99+0.28E -5.99-0.28E -5.99-0.28E 5.99+0.28E 

C2py 0 0 0 -10.67-E -5.99-0.28E 5.99+0.28E -5.99-0.28E 5.99+0.28E 

H1s(1) -14.98-0.52E -5.99-0.28E 5.99+0.28E -5.99-0.28E -13.6-E -4.39-0.18E -4.39-0.18E -4.39-0.18E 

H1s(2) -14.98-0.52E -5.99-0.28E -5.99+0.28E 5.99+0.28E -4.39-0.18E -13.6-E -4.39-0.18E -4.39-0.18E 

H1s(3) -14.98-0.52E 5.99+0.28E -5.99-0.28E -5.99-0.28E -4.39-0.18E -4.39-0.18E -13.6-E -4.39-0.18E 

H1s(4) -14.98-0.52E 5.99+0.28E 5.99-0.28E 5.99+0.28E -4.39-0.18E -4.39-0.18E -4.39-0.18E -13.6-E 
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Mulliken population analysis: where are the electrons? 

 

Consider a normalised orbital  

i ai a bi b
c c     and 2 2

2 1
i i ai bi ai bi ab

c c c c S       

We can define net population of atom a, i

a
q , and net overlap population between atoms a 

and b, i

ab
p , arising from this orbital as 

 
2i

a ai
q c  2

i

ab ai bi ab
p c c S  

Summing these terms over all occupied orbitals leads to the atomic populations and overlap 

populations between centres. 

 

Summing atomic populations for the different orbitals on a given atom (2s, 2px,y,z on C, for 

example) gives the reduced net atomic orbital and reduced overlap populations. 
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In CH4:  

consider  1 2 1 1 1 1
0.58 0.19 (1) (2) (3) (4)

s s s s s
C H H H H      : 

2

2

(1) (2) (3) (4)

(1) (2) (3) (4)

(1) (2) (1) (3) (1) (4) (2) (3) (2) (4) (3) (4)

0.58 0.34

0.19 0.04

2 0.58 0.19 0.51 0.11

2 0.19 0.19 0.18 0.01

C

H H H H

CH CH CH CH

H H H H H H H H H H H H

q

q q q q

p p p p

p p p p p p

 

    

       

         

 

 

Mulliken defined gross atomic populations by dividing the overlap population equally 

between the two component atoms. Doing so in CH4 leads to  

 Gross Pop  Charge 

C 3.966   0.034 

H 1.008   -0.008 

 

Note: Mulliken populations are notoriously basis-set dependent – only good for comparisons 

within closely related molecules. 

 

 

 

Example 2 (one you can do by hand) Extended Hückel calculation on N2. 

 

Slater exponents: N2s = N2p = 1.95 N-N = 1.1 Å 

  

1) Overlap matrix, S  

 

 N1 2s N1 2pz N1 2px N1 2py N2 2s N2 2pz N2 2px N2 2py 

N1 2s 1 0 0 0 0.45 -0.44 0 0 

N1 2pz 0 1 0 0 0.44 -0.32 0 0 

N1 2px 0 0 1 0 0 0 0.28 0 

N1 2py 0 0 0 1 0 0 0 0.28 

N2 2s 0.45 0.44 0 0 1 0 0 0 

N2 2pz -0.44 -0.32 0 0 0 1 0 0 

N2 2px 0 0 0.28 0 0 0 1 0 

N2 2py 0 0 0 0.28 0 0 0 1 

 

2) Parameters: 
 

 

2 2

2 2

26.0

13.4

s s

p p

N N

N N

H eV

H eV
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3) 

 
   

 
   

 
   

 
   


    


    


    


      

2 2

2 2

2 2

2 2

1
1.75 0.45 2*26.0 20.3

2 2

1
1.75 0.32 13.4*2 7.5

2 2

1
1.75 0.28 13.4*2 6.5

2 2

1
1.75 0.44 13.4 26.0 15.1

2 2

s s

pz pz

px px

pz s

ii jj

N N ij

ii jj

N N ij

ii jj

N N ij

ii jj

N N ij

H H
H KS eV

H H
H KS eV

H H
H KS eV

H H
H KS eV

 

 

 N1 2s N1 2pz N1 2px N1 2py N2 2s N2 2pz N2 2px N2 2py 

N1 2s -26.0 0 0 0 -20.3 15.1 0 0 

N1 2pz 0 -13.4 0 0 -15.1 7.5 0 0 

N1 2px 0 0 -13.4 0 0 0 -6.5 0 

N1 2py 0 0 0 -13.4 0 0 0 -6.5 

N2 2s -20.3 -15.1 0 0 -26.0 0 0 0 

N2 2pz 15.1 7.5 0 0 0 -13.4 0 0 

N2 2px 0 0 -6.5 0 0 0 -13.4 0 

N2 2py 0 0 0 -6.5 0 0 0 -13.4 

 

Solving (using linear algebra package of your choice) gives energy levels: 

2u: +54.0 eV 

1g -9.5 eV 

2g: -13.5 eV   note 2g is above 1u (sp mixing) 

1u: -15.6 eV 

1u: -19.9 eV 

1g: -32.1 eV 
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Problems sheet 

 

Problems 1  
1.1 Write down the Slater determinant for the ground states of the following: 

Li, He2 and Li2. 

 

1.2 The z component of the spin angular momentum operator is 



1

ˆ
n

zj

j

S  

Show that  

1 (1) 1 (1) 2 (1)
1
1 (2) 1 (2) 2 (2)

3!
1 (3) 1 (3) 2 (3)

s s s

s s s

s s s

 is an eigenfunction of 
z
S and evaluate the 

eigenvalue. 

1.3 By expanding the expression        0
1 2

12

ˆ ˆ ˆ j
H E H H

r
 

 Show that the energy of the doubly excited configuration,  1 1
u u

  , 

is  
1 1 1

2
u u u

E E J    

 

1.4 The expression 
1 1 1 1 1 1g u g u g u

E E E J K          was derived in the handout for the first 

excited triplet state of H2, 
 

 
 

  
1 (1) 1 (1)1

1 1
1 (2) 1 (2)2

g u

g u

g u

. 

 

The wavefunction above is in fact the MS = 1 component of the triplet state, also 

represented as         
1
1 (1)1 (2) 1 (1)1 (2) (1) (2)

2
g u g u

 

 

The MS = 0 component of the same triplet state is: 

                      
3 1

1 (1)1 (2) 1 (2)1 (1) 1 2 1 2
2

g u g u  

 

while the MS = 0 component of the corresponding open-shell singlet excited state (

    
1 1

1 1
g u

) is given by: 

                      
1 1

1 (1)1 (2) 1 (2)1 (1) 1 2 1 2
2

g u g u  

 

Show that these two wavefunctions can be represented as linear combinations of two 

Slater determinants. 

   

   

 
   

 
 

1/3
1 (1) 1 (1) 1 (1) 1 (1)1

2 1 (2) 1 (2) 1 (2) 1 (2)

g u g u

g u g u
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By expanding, verify that the energy of the MS = 0 component of the triplet state is also 

1 1 1 1 1 1g u g u g u
E E E J K         .  

Calculate the energy of the open-shell singlet state, 1 .  

 
1.5 (a) Give expressions for the total energy of the following configuration in terms of 

1- and 2-electron integrals, Ei, Jij and Kij: 

 

 

Note that  
(b) Express the total energies for the same species in terms of the Hartree Fock 

orbital energies, i, Jij and Kij.  

(c) Show that the first ionization energy of Li is equal to
2s
 . 
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Problems 2 

2.1 Evaluate the overlap matrix element between a normalised p-type Gaussian basis function 

located at the origin, 𝜙1, and an s-type Gaussian located at (0,0,a), 𝜙2. The exponent in 

both cases is 𝛼. 

 𝜙1 = 𝑁1𝑧𝑒−𝛼(𝑥2+𝑦2+𝑧2)  𝜙2 = 𝑁2𝑒−𝛼(𝑥2+𝑦2+(𝑧−𝑎)2) 

 

You may use the standard integral     ∫ 𝑒−𝑏𝑥2
𝑑𝑥

+∞

−∞
= √

𝜋

𝑏
  

 
2.2 Use the Hückel approximation to set up and solve the secular determinant for the 

cyclobutadiene, C4H4. Now introduce non-zero overlap, S, between adjacent atoms 
and again solve the secular equations – what impact does this have on the energy 
spectrum? (a typical value of S is 0.2) 

 
2.3 Using the following data, set up the 2x2 overlap and Hamiltonian matrices for one 

component of the  system ( and *) of CO (you need only consider the px orbitals 
as the py are equivalent by symmetry) 


2 2

0.27
p px x

C O
S ,  

2 2 2 2
1.0

p p p px x x x
C C O O
S S  

(all other overlap integrals are 1 (
ii
S ) or zero ( ij

S )) 

 
2 2

14.8
p pO O

H eV ,  
2 2

11.4
p pC C

H eV  

 

  
1
*1.75*
2

ij ij ii jj
H S H H  

Solve the 2x2 determinant and calculate the coefficients in the bonding and 
antibonding orbitals. Comment on your results. 

 

2.4 Using the following data, set up the overlap and Hamiltonian matrices for H2O (bond length 

= 1 Å, angle = 90°). 

 

 

 
2 1 2 1(1) (2)

0.41
s s s sO H O H

S S ,   
2 1 2 1(1) (2)

0.20
p s p sz z

O H O H
S S ,    

2 1 2 1(1) (2)
0.30

p s p sx x
O H O H
S S ,


1 1(1) (2)

0.16
s sH H

S   

(all other overlap integrals are either 1 (
ii
S ) or zero ( ij

S )) 

 
2 2

32.3
s sO O

H eV  
2 2

14.8
p pO O

H eV ,  
1 1

13.6
s sH H

H eV  

 
1

2
ij ij ii jj

H KS H H   1.75K   

 

(1)H

O

H(2)

z

x

y



45 

Using an appropriate linear algebra package (octave, matlab, numpy), solve the 6x6 

secular determinant to give the orbital energies and the corresponding coefficients in the 

LCAO expansion. Use the coefficients to sketch the orbitals. 

 

By using appropriate normalized linear combinations of the 1s orbitals on H, show that the 

secular determinant can be block diagonalised into 1x1, 2x2 and 3x3 components. Solve 

the 2x2 component by hand (expansion coefficients not required) and show that the 

energies of these two orbitals are unaffected by the change in basis. 
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Appendix 1  (see also Valence lectures, pp18-23) 

Linear variation theorem for H2
+. 

 

1 1trial n n a sa b sb

n

c c c       

 

   

   

    

     

 
 

 

1 1 1 1

1 1 1 1

a sa b sb a sa b sb

trial

a sa b sb a sa b sb

c c H c cH
E

c c c c
 

 

 

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

a sa a sa a sa b sb b sb a sa b sb b sb

a sa a sa a sa b sb b sb a sa b sb b sb

c H c c H c c H c c H c

c c c c c c c c

       

       

  


  
 

 
2 2

2 2

2

2

a aa a b ab b bb

a aa a b ab b bb

c H c c H c H

c S c c S c S

 


 
 1 1 1 1

,
aa sa sa aa sa sa

H H S etc      

 

 

     

 

2 2 2 2

2
2 2

2 2 2 2 2 2
0

2

a aa a b ab b bb a aa b ab a aa a b ab b bb a aa b ab

a
a aa a b ab b bb

c S c c S c S c H c H c H c c H c H c S c SE

c c S c c S c S

          
  

(using
 

1

2 1 1 22

2

2

( , )

( , ) '( , ) ( , ) '( , )( , )

( , )

f x y

f x y f x y f x y f x yf x y

x f x y

 
 

  


) 

 

Multiply through by  2 2
2

a aa a b ab b bb
c S c c S c S  : 

 
 
 

 
 
       

2 2

2 2

2
2 2 2 2 0

2

a aa a b ab b bb

a aa b ab a aa b ab

a a aa a b ab b bb

c H c c H c HE
c H c H c S c S

c c S c c S c S
 

Note that 
 
 

2 2

2 2

2

2

a aa a b ab b bb

a aa a b ab b bb

c H c c H c H
E

c S c c S c S

 


 
 

 

   2 2 2 2
a aa b ab a aa b ab

a

E
c H c H E c S c S

c


     

 

         2 0
a aa aa b ab ab
c H ES c H ES  

Likewise    


      
2 0

b bb bb a ab ab

b

E
c H ES c H ES

c
 

 

  

 

 

 

   
  

   
0

aa aa ab ab a

ab ab bb bb b

H ES H ES c

H ES H ES c
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This system of simultaneous equations has non-trivial solutions when: 

 

 

Generalising to arbitrary size: variationally optimised solution occurs when: 

 

      0
ij ij

H ES  

 

If we assume normalised atomic orbitals: 

1
aa bb
S S  ,

ab
S S    

and define 
aa bb

H H   ,
ab ba

H H      

 

0
aa aa ab ab

ab ab bb bb

H ES H ES E ES

H ES H ES ES E

 

 

   
 

   
 

 

   

  

   

2 2
0

0

1 0

E ES

E ES E ES

E S

 

   

 

   

       

     

 

 (difference of 2 squares) 

or    1 0E S        

 

 
 1

E
S

 






 (note  is negative) 

These are the energies of the 1g and 1u orbitals of H2
+. 

 

Sub E

 back into secular equations to get ,

a b
c c : 

 

 
 1

E
S

 



 


0

1 1
a b
c c S

S S

   
 
       

         
       

 

 

multiply through by 1 S : 

         1 1 0
a b
c S c S S               

   

   

0
a b

a b

a b

c S c S

c S c S

c c

   

   

    

   

 

 

 

Likewise  
 
 1

a b
E c c

S

 



   


 

0
aa aa ab ab

ab ab bb bb

H ES H ES

H ES H ES

 


 
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Normalising for  1 1
1

a sa sb g
c   


   : 

 

     

 

2

1 1 1 1
1 1 1

1

2 1

a sa sb a sa sb a

a b

c c d c S S

c c
S

          

  



 

Likewise for  1 1
1

a sa sb u
c   


    

 

 

1

2 1
a b
c c

S
   


 

 


